Contact Us


Polestar Racing/Volvo





Polestar engineers spend months over the winter offseason struggling to squeeze a few extra tenths of a second per lap out of their cars. One of their most valuable tools is MSC Software’s Adams/Car which they use to evaluate different vehicle designs in critical areas of the track such as the corners.

Before we used Adams/Car we found that only 40% to 50% of what we tried at the test track turned out to be effective. Since we began using Adams/Car, 80% to 90% of the ideas that we try on the track succeed.”

Per Blomberg, Manager Chassis Development, Polestar Racing
In the past Polestar used hand calculations and spreadsheets to perform some very rough estimates of vehicle performance to attempt to select the best designs for testing. “These tools provide some value in sharing knowledge but contribute little towards predicting the performance of a prospective design,” Blomberg said. “We have long used simulation at the component level to, for example, evaluate stress and deformation in suspension components, but we were not aware of the possibility of predicting the performance of the complete vehicle until the MSC representative introduced us to Adams/Car.
Engineers create a model of the vehicle in Adams/Car to match a configuration that they are interested in evaluating. One of the key aspects of the vehicle is the pickup points in the suspension, the points where the suspension link arms attach to the chassis. The front end of Polestar’s current vehicle has a Macpherson strut with a damper that attaches to the body under the hood and a lower link arm that attaches to the hub. The rear end uses a multilink suspension. The locations of the pickup points are limited by the rules of the racing series. Polestar sometimes simulates vehicles outside these limits in order to get a better understanding of the sensitivity of the vehicle performance with respect to certain design parameters. Other parameters whose impact is evaluated during simulation include the spring thickness, anti-roll bar thickness, camber angles, tire properties and weight distribution in the vehicle
  • Quickly Build & Test Virtual Prototypes
  • Analyze Events
  • Evaluate Small-Scale Improvement

pdf iconDOWNLOADdown arrow