Contact Us


Comtes FHT






Pilsen Steel, a leading producer of castings, ingots and forgings experienced difficulties with ingots cracking in a forging operation. The company contracted with COMTES FHT to investigate and determine the root cause of the formation of longitudinal cracks in 34CrNiMo6 steel ingots.


Traditional process involved cooling of the ingots after casting to between 500oC and 600oC, after which the ingots are placed in the forging furnace at temperature of 1100oC to 1200oC. COMTES used MSC Software’s Marc nonlinear finite element analysis (FEA) software to analyze the process of heating the ingots in the furnace and confirmed that heating the ingots in the furnace generated thermal stresses that later caused cracks to form during forging. Additional simulation studies also showed that increasing the temperature of the ingots by 100oC prior to putting them into the furnace reduced thermal stresses to acceptable levels. Pilsen Steel implemented this change and it eliminated the cracking problem.

  • Realistic Simulation of the Multiphysics behavior of metal during manufacturing
  • Elimination of cracking in final product reducing reject rate and improving product quality

Performing thermal analysis on the complete ingot workload requires determining the radiant heat transfer between the furnace and each of the each ingots with shading effects taken into account. Marc excels at this type of challenging multiphysics problem which is why it is our finite element analysis tool of choice


pdf iconDOWNLOADdown arrow