Contact Us

Company:

e-Xstream engineering

Products:

Digimat
Marc

Industries:

Aerospace
Automotive

Overview:

Mechanical joints with fasteners are widely used for aircraft primary structures to assemble composite parts. In the case of a pin-loaded joint, stress concentration takes place on each side of the fastener leading to the apparition of local failure before the final failure of the assembly. Depends on the geometry of the joint, different failure modes may appear.

Although tests are frequently conducted to support the design of such components, the benefits of a simulation tool such as Digimat is obvious if the material modeling used is able to reproduce properly the damage behavior of the composites (unidirectional or woven reinforcement) in order to predict accurately not only the failure load but also the failure mode.

Results Validation:
  • Definition of the Progressive Failure Material model for both the UD and woven reinforced composite
  • Definition of a parameterized MSC MARC finite element model to seamlessly perform a coupled analysis with Digimat.
Benefits:
  • Good reproduction of the failure mode for the tested configuration
  • Good prediction of the failure load level
  • Possibility to investigate any type of geometry with confidence at no cost.

 
pdf iconDOWNLOADdown arrow

Company:

Airbus

Products:

Adams

Industries:

Aerospace

Overview:

Airframes are designed to deflect in response to aerodynamic and gravitational loads during flight. These deflections in turn load the mechanisms riding on the airframe that move the primary flight control surfaces to maneuver the aircraft. The airframe manufacturer must ensure that deflections of these mechanisms at any point in the flight envelope do not affect their operation. For example, the Airbus A400M elevator is connected to the horizontal tail plane (HTP) with eight hinges that form a straight line when the wing is undeformed. Seven of these hinges are floating hinges which can float in the hinge line direction. When the HTP structure is loaded, it deforms, deforming the hinge line. The multi body simulation (MBS) model here shows the location of hinge 7 which is used to move the elevator, and the drawing below the model shows a cross-section of the hinge. The gap g2 in the drawing allows the red lug to slide on the green pin.

Results Validation:

”The replacement of the physical A350- 1000 wing bending test with simulation of the effects of deflection on the flight controls saved Airbus about €3 million and 4 months on the certification process for the A350,” said Michael Vetter, Project Leader Multi-Body Simulation with Airbus. Most of these savings were achieved by eliminating the need to build test fixtures. Similar savings will be achieved for each future aircraft model. Airbus engineers are also working to apply this same method to other mechanical systems of the aircraft such as landing gear and passenger doors.

Benefits:
  • Saving significant time and costs by replacing expensive physical testing with Adams simulation
  • Removing the limitation on the number of different load cases and configurations that could be tested by physical test rig
  • The simulation results successfully correlated with all of the tests
  • These results convinced European Aviation Safety Agency(EASA) that functional testing could be replaced with Adams simulation so simulation is used to certify the A350-1000 XWB wing

 
pdf iconDOWNLOADdown arrow

Company:

Hendrickson Trailer Commercial Vehicle Systems

Products:

Adams

Industries:

Automotive

Overview:

The primary function of heavy duty trailer suspensions is to link the trailer to its wheels. This provides a compliant connection which protects the trailer cargo from the shock and vibration inputs developed at the road surface. In addition, the suspension must meet the customers’ expectations for usable life, and do so while being economical to manufacture. One of the challenges of trailer suspension design is that these requirements often conflict with each other. Trade-offs are often required in order to meet these performance requirements over the suspension’s entire operating range.

Results Validation:

“We can now simulate a new suspension, in a different trailer configuration, for a specific event, in a matter of hours as compared to the days or weeks that are required with physical testing,” Dr. Patterson said. “The fact that we can change the system much faster in the simulation than on an actual trailer makes it possible to evaluate the performance of our product in more configurations, all while spending less time and money building prototypes and performing physical testing. Of course, we always run a final physical test to ensure the accuracy of our simulations. The end result is that we are able to bring products to market faster, and generate larger revenues while reducing our product development expenses.”

Benefits:
  • Simulation results make it possible to see every aspect of suspension behavior.
  • Adams results match very closely with physical test measurements on numerous occasions comparing the tire loads, component forces, and suspension performance characteristics, such as ride height change.
  • Simulation provides a much better understanding of how the proposed suspension design performs than can be obtained by physical testing.
  • Loads determined by the simulation are used to design fatigue tests.

 
pdf iconDOWNLOADdown arrow

Company:

Products:

Adams

Industries:

Overview:
隐性机器人模型的概念是一个强大的工具,能够分析一些由视觉伺服团体所开发的控制器的内在特性。Adams 仿真在我们的隐性机器人模型的理论工作验证中起着重要作用。通过 Adams/Controls 将 Adams 与 Simulink 集成在一起,我们无需再编写复杂的方程式来预测并联机器人的动力学特性,同时可以获得图形化结果,让我们能够更加透彻地了解机器人的性能。

 
pdf iconDOWNLOADdown arrow

Company:

Thales Angenieux

Products:

Adams

Industries:

Consumer Products

Overview:

The defining characteristic of a zoom lens is that its focal length can be varied. The focal length determines the angle of view — how much of the scene will be captured — and the magnification —how large individual elements will be. The shorter the focal length, the wider the angle of view and the lower the magnification. The advantage of zoom lenses over lenses with a fixed focal length is that you don’t have to change lenses to achieve a tighter or a wider composition. Most zoom lenses, particularly those designed for consumer and professional photographers, lose focus when the focal length is changed. But high-end zoom lenses, especially those designed for producing films or television, can be zoomed in and out without losing focus. This type of lens is called a parfocal lens. The first parfocal lens capable of zooming in an out while maintaining precise focus to a degree acceptable for demanding cinema production was designed and built by Pierre Angénieux in 1956, a feat for which he received an Academy award for technical excellence. Parfocal zoom lenses are very difficult to design and build. Zoom lenses generally consist of three different groups; two of them are moving together (to change focal length) and the last one independently (to focus) and one stationary group of lenses with each group comprising two of more lens elements.

Results Validation:

With the new method proven, Ayad simulated all of the company’s zoom lenses and found the worst-case position for each lens. Now inspectors are able to inspect the tilt simply by moving the lens to this position and making the measurements. The net result is that the time needed to inspect each lens has been reduced.

Benefits:
  • Inspection time has been reduced
  • Less experienced operators can perform the inspection
  • Adams simulation accurately predict worst case position

 
pdf iconDOWNLOADdown arrow

Company:

Navistar & Tech Mahindra

Products:

Adams

Industries:

Automotive

Overview:

It takes a 450 horsepower truck with an 80,000 lb. load roughly 90 seconds to accelerate to 50 mph but the brakes must be able to stop the truck in less than 5 seconds. Air brakes are used almost exclusively in heavy-duty trucks and trailers because they offer the following advantages. First, the air they run on is free. It only needs to be compressed, cleaned, stored and distributed. The air brake circuit can be easily expanded so trailers can be coupled and uncoupled from it. Besides providing the energy required to stop the vehicle, compressed air also signals when and with how much force the brakes should be applied in any situation. Finally, air brakes can be designed with sufficient fail-safe devices to bring the vehicle safely to a stop, even in the event of an air leak. Reinforced rubber hoses deliver air from fittings on the frame to brake chambers on the axles. In a typical tandem rear suspension there are typically 8 brake hoses plus additional hoses for the power differential lock and other features for a total of 11. The hoses must be routed through a tight space and accommodate the full range of steering gear and suspension travel. The hoses are required to avoid contact with components with sharp edges that might wear the hoses, maintain a specified minimum bend radius to avoid constricting flow within the hose, and avoid axial forces high enough to pull out the hose out of the fitting.

Results Validation:

“Simulation makes it possible to try many different positions, orientations, and clipping options early in the design phase prior to the availability of a prototype,” said Stefano Cassara, Manager Vehicle Dynamics Simulation for Navistar. “New design iterations can be evaluated in a small fraction of the time required for physical testing. The new approach makes it possible to design new hose configurations in only about two weeks. Since the design process will be carried out early and outside the critical path we should be able to bring new vehicles to market six weeks faster than in the past. Another advantage of the new approach is that we can model loading scenarios, such as braking, that cannot be duplicated on the test rig.”

Benefits:
  • Simulation of hose routing helps reduce time to market by six weeks
  • Adams predictions perfectly matched test results in each steering position
  • Simulation provides a much better understanding of how to route the braking hoses to avoid contact with components with sharp edges that might wear the hoses in response to suspension and steering movement
  • New Adams FE Part provided a fast and accurate way to predict the large deformation of brake hoses in Adams environment

 
pdf iconDOWNLOADdown arrow

Company:

Products:

Actran
Actran AeroAcoustics
Actran DGM
Actran for Trimmed Body
Actran TM
Actran VI
Actran VibroAcoustics
Adams

Industries:

Overview:
减少设计优质产品所需的开发时间和所耗资源,一直是一个重大的产业挑战。不同CAE技术的集成让我们朝这个目标向前迈进了一步。本文将讨论Adams与Actran,MSC软件公司的MBD与声学解决方案,如何组合并集成在一起,使MBD工程师在设计流程的早期洞察运动机构的声学行为具备可能。此外,声学工程师还可以从声学结果的进一步后处理中得到更多有价值的信息。
Challenge:
一般来说,预测出自诸如传输系统或变速箱这样的运动系统的噪声是很难的。如果没有准确地预测系统动态如何影响其噪声性能的能力,工程师们就没有一个有效的方法来重新设计他们的系统,以提高声学性能。传统的工作流程涉及三个界面,多体动力学(MBD)工具,有限元分析(FEA)工具和声学软件。首先,工程师将需要在MBD工具里执行动力学分析以获取齿轮壳表面的动态载荷,因为时域结果通常不能被声学软件直接读取,他们需要在频域下转换成完全的结构响应,然后,他们将可以最终把表面振动读取到声学软件中,并用它作为边界条件。这个工作流程是相当费力的,每次有设计变更时都可能需要多个CAE工程师一起合作。 MSC软件公司最近已经开发了一种新的方法,允许工程师在ADAMS界面进行建模,并在没有手动导出结果到声学软件进行噪声分析的情况下获取声学行为的初步结果和印象。这种新工作流程大大减少了对诸如变速箱这样的运动机构进行声学分析的时间和成本,与传统方法相比,新方法使工程师对新系统的设计在同样的时间里能做更多的迭代。
Solution:
让我们考虑一个变速箱的例子:齿轮运动引起变速箱的振动,这种振动又会影响齿轮的物理行为从而引发强耦合问题。振动的变速箱也会将能量转换到周边流体以及将能量转换成由其辐射的声波。同时,声波也会影响结构振动。然而,如果一方面多体动力学和结构仿真领域通常是强耦合的,并可以同时被求解,而另一方面,当考虑发生在空气中的声辐射时,从声波到结构的反馈又会被忽略。要评估的声学响应,我们可以考虑在变速箱周围分布一些麦克风。在Adams模型中,变速箱外壳被考虑成弹性体以捕捉其表面响应。变速箱的剩余部分(如齿轮、轴、轴承等)是刚性部件。建立Adams模型后,执行一个5s 动力学分析, 输入轴的转速从0到3000rpms 加大。从分析中,我们得到了每个组件的负载和接触力输出,以及每个系统部件的位移,速度和加速度输出。以下MBD仿真,仍然在ADAMS环境中进行,声学工具启动以建立诸如声学网格、无限元半径、声速、流体密度、输出格式、声环境(材料)等的声学分析参数。这个工具所做的事情,就是将MBD结果转换成的声学模型所需的边界条件,并在后台使用新的Actran时域求解器执行声学分析。在Adams环境中进行声学仿真时,你可以到MBD后处理器中得到这个变速箱壳体的一些声学结果,比如每个麦克风位置围绕麦克风的时域下的声压演化以及声音文件(.WAV)。
Results Validation:
CAE技术集成的先进性使开发时间和所耗资源减少。本文通过说明如何集成Adams和Actran提高CAE工程师的工作流程效率,提供了一个展示这些好处的例子。具体而言,将多体动力学和声学时域分析集成到Adams环境,使MBD工程师进行产品的初步声学性能评价。得益于音频文件的生成,这些评价同时包括了噪声质量的考察。最后,只有在最相关的案例中,才需要由声学工程师在Actran环境中执行高级的后处理。
Benefits:
CAE技术集成的先进性使开发时间和所耗资源减少。本文通过说明如何集成Adams和Actran提高CAE工程师的工作流程效率,提供了一个展示这些好处的例子。具体而言,将多体动力学和声学时域分析集成到Adams环境,使MBD工程师进行产品的初步声学性能评价。得益于音频文件的生成,这些评价同时包括了噪声质量的考察。最后,只有在最相关的案例中,才需要由声学工程师在Actran环境中执行高级的后处理。

 
pdf iconDOWNLOADdown arrow

Company:

IRCCyN

Products:

Adams

Industries:

Machinery

Overview:

The vast majority of robots are controlled through the use of encoders that measure joint rotation. But even when encoders with very high levels of accuracy are used, the ability of robots to move to an absolute XYZ position and ABC orientation is limited by deflection, thermal expansion and manufacturing variation. Some applications, such as placement of a disk drive read head, require very higher levels of positioning accuracy that can only be achieved with a very expensive, special purpose robot. This challenge is being addressed with visual servoing technology that uses a vision system to acquire an image that determines the relative positions of the robot end-effector and the target.

Results Validation:

“The concept of the hidden robot model is a powerful tool able to analyze the intrinsic properties of some controllers developed by the visual servoing community,” Sébastien Briot concluded. “Adams simulations have played an important role in validating our theoretical work on hidden robot models. The integration of Adams with Simulink through Adams/Controls eliminated the need for us to write complex equations for predicting the dynamics of parallel robots and also provided graphical results that gave us a better understanding of robot behavior.”

Benefits:
  • Adams simulation accurately predicted position and orientation of the robot.
  • Simulation played an important role in validating the theoretical work
  • Complex equations are no longer needed to predict the dynamics of parallel robots

 
pdf iconDOWNLOADdown arrow

Company:

e-Xstream engineering

Products:

Digimat
Marc

Industries:

Automotive

Challenge:

Reinforced plastics and composite materials are chosen more and more because of their improved performance regarding damping for NVH applications compared to current metals. Material specialists need to efficiently identify this mechanical characteristic which, like the stiffness and failure, is anisotropic and driven by local fiber orientations in the material’s microstructure. Moreover for NVH purposes, the frequency dependency must be clearly identified in order to provide accurate material models to design engineers.

Benefits:
  • Available in < 2 days when using available constituent models
  • Quickly evaluate various multiphase materials to identify the best candidates for NVH targets
  • Avoid waiting time and unneeded cost of performing additional experimental tests for each candidate material

 
pdf iconDOWNLOADdown arrow

Company:

VTT芬兰技术研究中心

Products:

Actran
Actran AeroAcoustics
Actran DGM
Actran for Trimmed Body
Actran TM
Actran VI
Actran VibroAcoustics

Industries:

Overview:
Actran模型中的更改最终在真实消声器上得以实现,噪声测试在更改后的消声器上重新进行。测试结果表明新的设计使100Hz三分之一倍频程的噪声降低了20dB,并使总体噪声降低了10dB。基于Actran的仿真结果,工程人员可以完全理解这个特定的噪声问题,并提出简单有效的解决方法。
Challenge:
在芬兰城市瓦萨一个居住区的居民们对附近的噪声干扰提出了投诉。居民区的噪声来自于附近的一个瓦锡兰船用四冲程中速发动机的陆上测试工厂。初步调查结果表明,这让人难以忍受的噪声来源于一台W6L32E发动机1000小时耐久测试的排气设备。在发动机夜间测试时进行了一次环境噪声的调查,在位于测试厂房及附近居住区之间的三个测点位置进行了噪声测量。噪声级测量结果显示噪声尖值在100Hz三分之一倍频程中的94Hz附近产生。此频率对应于发动机曲轴转动频率的7.5阶频率。正常情况下,W6L32E型发动机的噪声尖值会出现在其曲轴转动频率的3阶和4.5阶上。而此次测量到的噪声远不满足夜间环境噪声的限制标准。初步猜测认为噪声主要来自于半阶数的模块化部件产生的低频噪声。通过进一步实验希望找到在100Hz三分之一倍频程中产生噪声的确切原因。

 
pdf iconDOWNLOADdown arrow

Company:

Products:

MSC Apex

Industries:

Overview:
MSC 软件公司日前宣布,Fiedler 公司通过使用 MSC Apex 将仿真过程所需时间缩短了 80% 左右
Challenge:
Fiedler公司的产品开发团队是有限元计算领域的行家里手。此类计算的起点一般是利用 CAD 几何体来创建有限元模型。尤其在处理复杂的模型时,这些计算准备工作(包括网格划分和几何体的准备)通常是整个开发过程中劳动密集度最高、最容易出差错的阶段。没有足够的洞察力的话,网格划分是一项艰难的工作。
Solution:

      Fiedler 公司所处理的模型包括矿业机械机架之类的大型焊接结构,这些结构通常包括数以百计的薄壁实体。工程师们根据这些实体来创建中间面模型,然后利用壳单元交叉连接在一起。中间面的创建与连接是一项相当耗时的工作。而借助 MSC Apex,只需一次点击就可以自动完成近 80% 的 工作。通过交互的方式拖拽几何边界并在同一平面内移动中间面,就可以完成剩余表面的手工连接。与传统程序相比,MSC Apex 的效率更高。如果已经完成了几何体的网格划分,还可以进行交互式几何体处理。网格将自动更新,用户可以直接查看几何体的变化对网格的影响。

     

Benefits:
Fiedler 工程服务有限公司首席执行官 Peter Siebenbäck 表示:“通过使用 MSC Apex,我们的项目做到了多快好省,而我们的工程师也能将更多的时间用于复杂的仿真工作。这样既提升了产品质量,又节约了时间和金钱。”

 

Company:

e-Xstream engineering

Products:

Digimat
Marc

Industries:

Aerospace

Challenge:

Discontinuous fiber composites (DFC) are produced by compression molding of prepreg chips which are made of a combination of unidirectional fiber and a Thermoset or ThermoPlastic matrix. In some cases, matrix is made of thermoset which consolidate through a chemical/ cure reaction at elevated temperature. However, when the curing cycle is not well monitored it can be observed some cracks that appear between the chips due to apparition of thermal stresses normal to two chips.

Due to their complex microstructure, these materials request the definition of new dedicated methods in order to capture accurately the local orientation and to compute the local homogenized properties in order to simulate correctly the curing and the design process. Hence, the Digimat platform is used to build a complete methodology to compute these residual stresses and to take them into account during the design cycle of the part.

Benefits:
  • Propose a complete methodology to analyze Discontinuous Fiber Composites: Understand the effect of the local microstructure on the behavior of the part.
  • Improve the understanding of the effects of the manufacturing cycle parameters: Evaluate the risk fo the apparition of defects between the chips for a given set of parameters of manufacturing (pressure, temperature histories). Though their nature is different, this procedure can be applied for both, thermoset or thermoplastic resin.

 
pdf iconDOWNLOADdown arrow

Company:

National Institute for Aviation Research

Products:

Digimat

Industries:

Aerospace
Automotive

Challenge:

Designing lightweight CFRP structures with confidence requires access to allowables values. Allowables generation is extremely time and money consuming. Various layups, coupon tests and environment conditions must be covered for each characterized material system. Each test configuration must be repeated many times to obtain a statistical evaluation of the mechanical property.

Results Validation:

Digimat-VA successfully predicted allowable values within 10% error for all cases except the soft open-hole tension scenario. Typical run times for unnotched tests were 3 minutes, while it look less than 10 minutes for open-hole cases.


 
pdf iconDOWNLOADdown arrow

Company:

e-Xstream engineering

Products:

Digimat
Marc

Industries:

Aerospace

Challenge:

Laminate T-stiffeners are widely used in the aerospace industry to transfer the 3D complex loads between the stiffeners and the skins. However, the way they are manufactured can affect the inherent properties.

In this case, we have considered that the stiffener and the skin were assembled using an RTM process but because of the poor infiltration of the resin due to the fiber orientation changings, some dry spots appear in the noodle. These dry spots or voids affect the mechanical properties of the noodle and this knock-down of properties must be taken into account during the design process.

Results Validation:

With Digimat, effective modeling solution enables to understand the sequence of failure of the structure and the resultant load level. The results allowed to capture the progressive loss of stiffness of the structure and the resulting load.


 
pdf iconDOWNLOADdown arrow

Company:

Omni-Lite Industries

Products:

Simufact at a glance

Industries:

Overview:

Omni-Lite Industries 是一家技术领先的材料加工公司。该公司最近设计了一款表现出独特材料流动的新部件。该部件采用 1100 铝材冷压成型。新部件的制造工艺利用三套模具的冲压进程,并在中岛田TH3 -6A 冷成型机上生产。 采用MSC Software 公司提供的 Simufact.forming 仿真完成了工具初步设计并进行了评审。在初步评审时,除了部件法兰内的材料体积以外,似乎一切都满足要求。随后减小了第二个工段的凹型挤压模的半径,以满足减少材料体积要求。


 
pdf iconDOWNLOADdown arrow

Pages