e-Xstream engineering






Mechanical joints with fasteners are widely used for aircraft primary structures to assemble composite parts. In the case of a pin-loaded joint, stress concentration takes place on each side of the fastener leading to the apparition of local failure before the final failure of the assembly. Depends on the geometry of the joint, different failure modes may appear.

Although tests are frequently conducted to support the design of such components, the benefits of a simulation tool such as Digimat is obvious if the material modeling used is able to reproduce properly the damage behavior of the composites (unidirectional or woven reinforcement) in order to predict accurately not only the failure load but also the failure mode.

Results Validation:
  • Definition of the Progressive Failure Material model for both the UD and woven reinforced composite
  • Definition of a parameterized MSC MARC finite element model to seamlessly perform a coupled analysis with Digimat.
  • Good reproduction of the failure mode for the tested configuration
  • Good prediction of the failure load level
  • Possibility to investigate any type of geometry with confidence at no cost.

pdf iconDOWNLOADdown arrow