Contact Us


Sant Longowal Institute of Engineering & Technology






Welding is a common practice in the automotive, aerospace, railways, ship building, and machinery industries. It allows for the joining of components by subjecting them to intense localized heat which melts and coalesces the material in the welded region, forming a permanent joint. Multiple process parameters influence the effectiveness of the welding, which include energy source, shape and size of the melt zone, heat affected zone, and speed. Understanding and improving this challenging process through physical iteration can be time consuming and expensive. MSC’s Marc, a nonlinear finite element analysis tool, can provide the required insights needed to solve these parameters in a cost-effective manner.

Results Validation:

The model demonstrated the effects of thermal contact at the joint interface during GTAW welding of the dissimilar materials, and the influence of transverse offsetting of the arc away from the weld line. “We found Marc to be very good in simulating the complex physics of the welding problems. Matching results with experimental data demonstrated that this approach can be used to significant costs by reducing material waste and improving life of the welded parts,” says Singh.

  • Easily try alternative approaches without having to invest in physical experimentation
  • Gain greater insight into temperature gradients with simulation, which are harder to measure in physical tests

pdf iconDOWNLOADdown arrow