+1 855 672 7638 | |Contact Us|

MSC Nastran

Multidisciplinary Structural Analysis

MSC Nastran is a multidisciplinary structural analysis application used by engineers to perform static, dynamic, and thermal analysis across the linear and nonlinear domains, complemented with automated structural optimization and award winning embedded fatigue analysis technologies, all enabled by high performance computing.

Engineers use MSC Nastran to ensure structural systems have the necessary strength, stiffness, and life to preclude failure (excess stresses, resonance, buckling, or detrimental deformations) that may compromise structural function and safety. MSC Nastran is also used to improve the economy and passenger comfort of structural designs.

Manufacturers leverage MSC Nastran’s unique multidisciplinary approach to structural analysis at various points in the product development process. MSC Nastran may be used to:

  • Virtually prototype early in the design process, saving costs traditionally associated with physical prototyping.
  • Remedy structural issues that may occur during a product’s service, reducing downtime and costs.
  • Optimize the performance of existing designs or develop unique product differentiators, leading to industry advantages over competitors.

MSC Nastran is based on sophisticated numerical methods, the most prominent being the Finite Element Method. Nonlinear FE problems may be solved either with built-in implicit or explicit numerical techniques. A number of optimization algorithms are available, including MSCADS and IPOPT. The fatigue capability in MSC Nastran has been developed jointly by nCode International Ltd. and MSC Software.

MSC Nastran Advantages:

Multidisciplinary Structural Analysis

 

Common structural analysis solutions are dedicated to one or a few analysis disciplines. To build up a comprehensive level of engineering analysis capability, multiple software solutions must be acquired, and users must be trained with each new tool. MSC Nastran features multiple analysis disciplines, enabling customers with one structural analysis solution for a wide variety of engineering problems.

  • Use one platform to perform linear or nonlinear analysis for the following disciplines: static, dynamic (NVH & Acoustics included), thermal, and buckling, and reduce the dependency on multiple structural analysis programs from various vendors
  • Perform fatigue analysis with embedded fatigue technologies and reduce the time usually associated with fatigue life determination
  • Assess the behavior of advanced composites and fiber reinforced plastics with built in Progressive Failure Analysis and User Defined Services for Mean-field Homogenization coupling with Digimat

Customer Testimonial

MSC’s integrated solution for linear and nonlinear calculations facilitates reuse of models which saves a lot of time in pre- processing and enables us to standardize the data exchange formats for body models when collaborating with other departments or external suppliers.”
- Sylvain Calmels, Manager
PSA Peugeot Citroën. PSA Peugeot Citroen Selects MSC Nastran as Its Choice for Nonlinear FEA.
MSC Nastran is used to perform both linear and nonlinear stress analysis along with dynamic analysis for various components and sub-assemblies constituting the pump. […] Accurate predictions during these simulations is helping the C.R.I. Pumps' R&D team to reduce physical testing and product development time. The simulations are also enabling our engineers to analyze more design variants and come up with optimal designs, thus saving material cost too.”
- S. Ramdas, General Manager - Strategic Business Initiative
C.R.I. Pumps. C.R.I. Pumps Selects MSC Nastran for its Unique Linear & Nonlinear Integration.

Structural Assembly Modeling

 

One structural member is rarely analyzed independently. Structural systems consist of numerous components, and must be analyzed as a whole. MSC Nastran features a number of methods to join multiple components for system level structural analysis.

  • Expedite meshing with Permanent Glue, enabling you to connect incongruent meshes that would traditionally require time consuming mesh transitions
  • Save time constructing assemblies that consists of welds or fasteners via specialized connector elements
  • Speed up the re-analysis of large assemblies by constructing Superelements, and optionally, share Superelements with other manufacturers while concealing confidential design information
  • Perform contact analysis and determine contact stresses and contact regions in multi-component designs

Customer Testimonial

The use of glued contact for assemblies reduces the problem setup time from 1 day to 1 hour and avoids tedious mesh alignment between parts.”
- Julien Rodess, Study Engineer
Sogeti. Product Brief - MD Nastran 2010.

Automated Structural Optimization

 

Design optimization is a critical element in product development, but is often very iterative and requires a great deal of manual effort. MSC Nastran includes optimization algorithms that automatically seek optimal configurations in an allowed design space.

  • Optimize for stress, mass, fatigue, etc. while varying design variables such as material properties, geometric dimensions, loads, etc.
  • Enhance the shape or profile of structural members with shape optimization
  • Find optimal composite laminate ply thicknesses with topometry optimization
  • Determine optimal bead or stamp patterns for sheet metal parts with topography optimization
  • Remove excess and unnecessary volume with topology optimization
  • Simultaneously optimize multiple models across disciplines with Multi Model Optimization

Customer Testimonial

Advanced optimization processes are used on both component and system level to explore the design space in search of optimal designs. MSC.Nastran & Optimus software play herein an important role to capture the simulation process and accelerate the optimization schemes.”

High Performance Computing

 

Analysis models can be very large in size, requiring an extended period of time to solve. Such models can take hours or days to solve with traditional FEM applications. MSC Nastran features a number of High Performance Computing capabilities enabling engineers to solve large problems fast.

  • Take advantage of multi-core and multi-node clusters with parallelization technologies: Shared Memory Parallel and Distributed Memory Parallel
  • Utilize nVidia GPU Cards to accelerate the analysis of models composed of solid finite elements
  • Perform modal analysis faster by using a highly tuned Lanczos solver or Automated Component Modal Synthesis
Our ability to quickly and thoroughly evaluate many design alternatives made it possible to increase the processing speed of the machine by 50% while reducing vibration levels below the previous generation of machines. [...] The first prototype provided the performance and functionality predicted by the simulation so it became the final product. The new machine was completely designed in one and a half months, faster than any similar machine.”
- Stefano Grassi, Technical Director
Kosme. User Case Study - Kosme.

Customer Service

 

MSC Software provides a number of resources to support your use of MSC Nastran. Available services include:

  • Technical support, often rated 4.5 out of 5 by customers.
  • The MSC Learning Center, a subscription that entitles a user to the entire MSC Nastran training course catalog.
  • MSC Nastran expertise, MSC Software was one of the original developers of the first NASTRAN code and has continuously developed MSC Nastran for over 40 years.
Our MSC application engineer comes out at least once a month to see how we are doing and help us with any issues. In fact this plane would have been impossible to model without the phone support, on-site visits and consulting services provided by the MSC support team"
- Dana Taylor, AeroVironment.
Boeing, and GE Aviation. Global Services Brochure.
Share this page Share
+1 800 942-2072
M-F 8am-5pm EST