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1. Introduction

In the present paper we discuss the motion of a single wheelset which is
elastically connected to a vehicle body. The track along which the wheelset
is moving, 1is supposed to be tangent and purely straight (without

irregularities). The body moves with the constant speed V' in a direction
parallel to the track.

It is interesting to mention that both the restriction to a tangent
track and the restriction to a translational motion are not essential: it is
quite possible to draw up a theory for the motion along a curved track of
any shape of a wheelset connected to a vehicle body which presents parasitic
(lateral, vertical and rolling) motions [l]. As we like to emphasize in the
present paper the geometric contact theory, we here shall restrict ourselves
to the model described in the previous paragraph.

Our starting-point is the division of the various geometric, kinematic

and dynamic quantities into quantities of order zero ("00") 1like the
wheelbase and the wheel radius, gquantities of order one ("Ol") 1like the
parasitic displacements and rotations of the wheelset and higher order
quantities ("02" etc.). Then in the equations of motion we restrict

ourselves to 00 and 01 quantities and this procedure gives rise to
considerable simplifications. However, our model remains to be strongly non-
linear because the conicity is 00 rather than 01, and this results in a
strong non-linearity of- the geometric contact. Besides, the physical con-
tact, too, is strongly non-linear.

Further on, we shall restrict ourselves to the case that the track and
the wheelset profiles are symmetric.

Note also that in the paper overlining indicates a geometric vector,
whereas underlining indicates an algebraic vector.

2. Outline of the model

In fig. 2-1 we have schematically indicated the positions of the vehicle
body and the wheelset. In any central pocsition of the wheelset its centre is

on the straight 1line a)f which 1is parallel to the track. In the marked
position, in which a)§=s*, the centre of the wheelset is the point O when
it is in its central position, and in the point 0*, situated in the plane
(y,O,z), when it is in any other position. In sec. 3 we shall discuss more
in detail where the centre of the system (O7,x’,y",z") is situated.

The coordinate system (0,,X;,);,2,) is connected with the body, O, being
situated on the axis a)§. This point is connected to the wheelset centre by

a linear spring. The system (0,,X,,);,%,) purely translates along the track.
The effective rigidities of the longitudinal, lateral and vertical

springs are €.,C, and ¢, respectively. In railway practice the spring forces
apply at the axlebox centres B and B,, shown in fig. 2-2, and for each of

these points the rigidities are }écx,}écy and }{cz. From this we easily can

derive the forces and moments shown in fig. 2-2. Note that in the central



position the body exerts the gravity force G at the wheelset; in any other

position this force amounts to the value G—czw .

3. The geometric contact

The wheelset displacement is shown in fig. 3-1. The translation with respect
to (0,x,y,z) is described by Vv and W and the rotation is partially
described by the angles ¢ and y, to which the rotation (-#) about the axis

O*y' should be added. The latter rotation does not influence the geometric

contact and we can restrict ourselves to the Ol quantities Vv, W, @¢and vy,

which describe the wheelset motion together with the 00 quantities s’ and 6.
Clearly, there must exist two constraint relations between V, W, @ and

v. Henceforth, we shall consider V and y as the independent and W and ¢ as
the dependent coordinates, so that we can write

w=wy,vy), 0= o0 y). (3-1)

. .
The complete model is described with seven coordinatess,v,w,qo,e,l//and

the body displacement §. But as the body velocity is equal to V(V being
constant), we can write

s=Vt . (3-2)
This enables us to replace the 00 coordinate s” with the 0l coordinate
u=s -Vt . (3-3)

In the same way we also can replace the 00 coordinate € with the O1
coordinate

y=s/r-0, (3-4a)

so that also
7= Vf/r—e. (3-4b)

In this way the wheelset motion can be described by six Ol coordinates:
u,v,w,p, ¥ and y.

The relation (3-2) is a constraint equation as well. We shall always
take it into account. Thus our system has four degrees of freedom when the
constraint equations (3-1) are taken into account and six degrees of freedom
when they are not taken into account.

We now concentrate on the latter constraint equations. We call Aj the

contact point on the rail surface and A; the contact point on the wheel

surface; note that always j =1 for the right-hand side and jF =2 for the
left-hand side of the system. Then we can find six equations from the

condition that Aj and A; * coincide and four equations from the condition
that in the contact point Aj the normal 7; on the rail surface has the same
direction as that of the normal 7{1-' on the wheel surface in A;.

For the description of the rail surface we introduce the coordinate

systems (4,;,¢,,7,,{;) shown in fig. 3-2. Clearly,



x1'=§j’ yj=i(b—77j)= Zj=r+4j (j=12). (3-5)

We now can describe the profile by the function f:

§j=f(ﬂj) (j=12). (3-6)

Then the conicity 7y; is determined by

dc.
tan?’f’—'('j_,;) =(%) =f'(n,),(J=12) (3-7)

n=n; n=n;
For the rail surface j there exists the relation

F =0, (3-8)

between fj,nj,gj , Where

F,=¢,-f(n,) - (3-9)

Here F; should also contain the terms 02 because for determining the normal
direction we have to differentiate F;. Fortunately, F;(3-8) contains the
terms of any order.

Now we can write for the directions of p;

. n, = [nxj, n,, ng.]T , (3-10)

where

n, = : o’Fj/ﬁsz _, n,= , 55/5362 :
V(@ jox) +(@ jon ) 4l o) 7 (@ ox) +(j0v | +(a5 02

(3-11)
aﬁ}/ﬁZj

\/(aFj jox,) +(eF, [8y,) +(&F, /6z,)

Together with (3-9), (3-5) and (3-7) we obtain

n.=

aﬁ}:@:O, @=$—aﬁ=itanyj+02, @=—5—&=1+02, (3-12)
ox, &, i ; dz dg;

2 2 2
\/(5Fj/c”xj) +(ﬁFJ./0”yj) +(49Fj/é’zj) =cos'7,;+0,, (3-13)
n, =0, n,= =% siny;+0, n;=cosy;+0,. (3-14)

For the wheelset the surface functicn is more complicated: see fig. 3-

3. In the right-hand part we have indicated the contact point A;. We have

introduced the additional axis O*Z;* and in the left-hand part we have shown
* * Aok * . * * K .

the plane (¥ ,0,z; ). We call % the distance from 4 to Oy . Now the profile

curve can be indicated by means of the system (ﬂ,Agl,p:). For both values of
J we now can write down the counterparts of (3-5)-(3-7):

x;=8, yy=20b-1m), z=r+;, ri=r+p; (j=12), (3-15)



Py =) (=12), (5
. _[dp; _ df') . . _
tany ; = (dn*)ﬂ-w]-_ = (dn« o =f (le) (/=12) (3

Moreover, we have

*2 *2 *2
=Xtz (3=
From (3-15) and (3-18) we <can find the wheel surface equations
F =0 (3-
with
* 2 *\2
Fy=4{&+(0r+8 )Y -(r+0) }+03 (3-

Writing this out yields

"¢ -p)=0; (3-

which means that

p;=¢+0, (3-

This means that in all relations, with the exception of (3-20), we now

replace p:. with 4’; So we can replace (3-16) and (3-17) with

&=r(n) (j=12), (3-
. (e -
tan}/j =(d(’2J =(df) =f (77])>(J=172) (3-
77 N N .

an’) -_.
n =n; n =0
and we find by means of (3-20), (3-15) and (3-17):

*

a; _

%}_ ) =§*, I =H(r+)tany’, —S=——=r+{, , (3-
& & 7 ay o TN oz dg ’
* : * : * 2 * *
\/(5F‘}/5xj) +(5F}/0"y,-) +(aF;/5ZJ‘) =(r+¢;)cosy, (3-
and
. Seosy, L., .
Ny = =, n”.=ismy,., n; =cosy,, S (3~
P .

We still have to determine the relation between (0, x, v, z)
(0" ,x" ,y" ,2" ) From fig. 3-1 we derive

X 0 x.k
yl=|vI[+G|y, (3-
z w z
where the matrizx G (to be distinguished from the weight force G) is equal
cosy —cosgsiny  singsiny 1 - O
G=|siny cospcosy -sinpcosy |=|w 1 —p|+0, . (3-
0 sin @ cosQ 0 o 1

16)

17)

18)

19)

20)

21)

22)
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23)

24)

25)

26)
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28)
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29)



Together with (3-5) and (3-15) the condition Aj=A; yields with terms of 00
and Ol:

& =& Fby, (3-30a)
p— — *

t0Fn,=vibFn -ro, (3-30b)

r+¢ =wrlp+r+¢; . (3-30c)
The condition Zj =Z; reads in algebraic notation:

W =Gn, (3-31)
or together with (3-28), (3-14) and (3-27) in terms of OO0 and 01 (like
everywhere in the sequel):

" cosy ]
L__}/_J_=$yjsm}/1 s (3—-32a)
r
. * .

Isiny; =*siny; +pcosy;, (3-32b)

cosy; =t@siny  +cosy, , (3-32¢)

the two latter equations being identical: they can be replaced with

y;=v;te. (3-33)

Next, (3-3la-c), (3-32a) and (3-33) can be rewritten like

roF(n,-m)=v, (3-34a)

wtbp—({;-¢)=0, (3-34b)

to+y,-y;=0, (3-34c)

& =Fbo, &=trytamy,, (3-35a-b)
with

b,=b-rtany ;. (3-36)

In (3-34a-c) gj,g;,}’j and }/:. only depend on 7}; and 7];, to wit through
(3-6), (3-23), (3-7) and (3-24). Thus these six equations contain no more

than six unknowns: W>¢’771:772>77; and n;,v being given.

The equations are strongly non-linear; they can be solved approximately
by means of the Newton-Raphson procedure. For, their Jacobian can be
determined in an analytic way: the relations (3-7) and (3-24) can be
rewritten like

’ ’
y;=arctan(¢; ), ;= arctan($ ), (3-37)
so that
r,=(¢; cos’y, )", ry=(L; cos’y ), (3-38)
and
y; =(rycosy,)", yi=(rycosy )", (3-39)

r, and r;,. respectively being the rail profile and wheel profile radii of
curvature.

In the further calculations we also will need the expressions for
w,,=3w/& and @, =8p/ (note that in our first order theory
W,, =W[Oy =0 and ¢, =3p/0y =0). Differentiating (3-34a-b) with respect
to V yields



_ b(tany, —tany,) +0
” b +b, v

_tan;/l+tan}'2
b +5b,

®,, = +0,. (3-40)

The Newton-Raphson procedure boils down to the following algorithm. We
always can write the non-linear equations to be solved like

J(x,)=0, (3-41a)

X being a scalar and f and Yy column vectors with 7 elements (sco that in

our case

* «7
n=6 x=v, y=[w.o.nm.m.m) - (3-41b)

Now assume that yo is an approximate sclution of (3-40) for X=X;. Then an

improved solution yl=yo+Ay can be found by substituting these X, and Y
into (3-40), which leads to

when we neglect higher order terms. Thus the improved solution reads

of

-1
Y=Y~ g f_(xosyo) (3-42)

and this procedure can be repeated at will.

When the rail-wheel contact only can take place in one single point, we
can always start with the value V=0, increase V gradually and calculate
the other geometric variables for each value of V. (Note that W 1is an even
and @ 1s an odd function of V.) However, this method gives rise to
difficulties when the combination of profiles also admits double-point
contact: see fig. 3-4, in which we have shown the relation between V and @
for such a case for positive values of V. Then there are two turning-points:

F; and Pzr whereas in the point Pl2 there is a double contact: in that point
ﬂj,ﬂ;,é'j,c;,}/j,}/;,r)j and r;. have two different values.

In that case V decreases rather than increases between the points £
and Pz, when the contact points moves continuously along the rail and the

wheel profiles. However, on the sections B,B,BE and FEF, the wheel
penetrates into the xail, which physically is impossible. This means that
these sections have no physical meaning and that they have to be left out of

consideration. In P;Z the contact point jumps from one position to another
one.

On the other hand the three afore-mentioned sections enable us to

determine the double point in an elegant way. For this purpose we introduce
an additional variable: the arclength §. Clearly,

x=x(s), y=y(s). (3-43)



Differentiating (3-40) with respect to § yields

& 0"2 =
viz.
V74 174
o Oy T
o oy —

the prime indicating a differentiation with respect to §. Moreover, because

(dsy = ()’ +dy'dy , (3-45)

we have in addition
(x'Y+yTdy =1. (3-46)

For the n+l equations (3-44) and (3-46) we can solve x’ and y', and this can

be done in an easy way because the n equations (3-44) are linear in x' and

the components of ).

We put
d
——l:g ) (3-47)
dx
then
y =c¢cx'. (3-48)

of &
(_;—'f_‘+_‘£.£ x’_—: ) (3—-49)
so that, provided that X' #0,¢ is determined from

-1
V)
c= L) oL (3-50)
- 0"2 17,9

Combining this with (3-46) yields an equation for X' from which x' can be

solved:

1
X' =t———. (3-51)

The above-mentioned method has been indicated by R. Seydel[2 p. 11l1-
113]. However, he does not indicate how in (3-51) the sign has to be chosen.
But this can be done quite easily by comparing the direction of the vector

[xg)/fr' in the (n+l)-dimensional space with the direction of the vector

T
[x&d’Z!adT] belonging to the previous value of § and this leads to the
condition

(l+go,fg)x;,dx’ >0, (3-52)



from which we easily can derive the sign (+ or -) in (3-51).

Numerically, the vector ¢ determines the tangent to the curve in the
(n+l) -dimensional space: the predictor part of the procedure. When this
vector is found, we increase the value of S and choose a point on this
tangent; this point belongs to an approximate solution of (3-40), which can
be used for starting the NR-procedure. When that procedure diverges, we have
to decrease the value of §, to choose a point more in the neighbourhocod of
the previous solution and to try again, etc. This is the corrector part of
the program.

Once the points B and B in fig. 3-4 have been found, F, can be used
for finding the coordinates of the double-point I'{z . For this purpose we use
the NR-procedure on the section OF and on the section starting in F, on
which V' >0. Then we determine the values of @ at issue and their
difference: when the latter vanishes, we are in the neighbcurhood of P12 . The
exact position of P12 best can be found by writing down the equations (3-34a-
c), which now determine the double point: there now are nine of such

equations for the nine unknowns v,w,¢,771,772,773,77:,77;,77;; here the index 3
refers to the second contact point at the right-hand side, when we suppose V
to be positive.

4. Dynamics

We now shall derive the equations of motion for the system. This can be done
by means of the well-known Newton-Euler equations, written down for an
inertial reference frame:

p=f, l=m. (4-1)

Here p is the wheelset momentum, / its moment of momentum, f the resultant

of the forces applied at the wheelset and #m the moment of this force about
the mass centre of the wheelset. The equations (4-1) are valid for the
vehicle body as well.

The coordinate system (0,,X,,),,Z,) of fig. 2-1 translates in the X-
direction with the constant speed $§=) and can be used in (4-1). The radius

vector ¥, and the velocity of 0" with respect to (Ob,xb,yb,.'b) are equal to
T
ro=[uv,w] . (4-2)

vo =[i,v, 0] . (4-3)

Thus we obtain
p=my,, b=r,p+b,, (4-4)

m being the wheelset mass and b, the moment of momentum with respect to a

coordinate system with the origin 0" and axes parallel tc (Ob,xb,y,,,zb). From
(4-2)-(4-4) we deduce that

r,p=0,, (4-5)



so that this term can be omitted when we restrict ourselves to 00 and Ol
terms. In the same approximation we find

b, =Gl o, (4-6)

with Qz (3-29); see also fig. 3-1. Here the inertia tensor l‘ is equal to

(=)

(4-7)

I~
]
o O 9~
o
~ o ©

I being the wheelset moment of inertia with respect to O'x" and Oz and 1}
its moment of inertia with respect to ny';u&, is the angular velocity of

the wheelset with respect to (Cf,x:)f,z') and amounts to
* T
o, =[¢.-0.¥] .

so that because of (3-4b) also

o, =[p-V/r+z9] . (4-8)
Altogether, (4-3)-(4-8) and (3-29) give rise to
p .
p=mv|, b=I Z i i” : (4-9)
w v] "o

Thus the equations of motion (4-1) read

i @ 7

mVl=f, I'ly|+2] 0 |=m . (4-10)
.. - . r .
w 4 -

In the sequel we shall perform all derivations with respect to the
distance §, indicated by an apostrophe ('). Moreover, we combine the vectors

j‘ and M to the single force vector

&=[£]. (4-11)
m

We also introduce the centrifugal force

[sz ) T
k,=- . [0,0,0,",0-¢] . (4-12)
Then the equations of motion (4-10) can be written like
2 II_
MViq =k, +k, (4-13)



mE 0

M= w (4-14)
01

0 being the zero matrix and E the unity matrix, and

Z=[M,V,W,(D,Z,I//]T . (4-15)

The equations of motion (4-13) contain all the six coordinates. In the
following way it is possible to find a set of equations of motion which only
contain the independent coordinates. The vector of the latter coordinates is

* T
q =[wzvv] . (4-16)
By means of the constraint equations (3-1) we can find the relation

’ ’

q=Jq (4-17)
' *

between the derivatives ¢ and q*; here J is the Jacobian matrix

10 0 0 o0 of
« 10 0 O 0 1 0
J = (4-18)
01 w, ¢, 00
00 0 0 01
Now we have
g"=[g' +0, , (4-19)
so that premultiplying (4-13) by ld' results in
*rr_ r
MVq =J7(k,+k) . (4-20)
where
m O 0 0
e e |0 0 0
M =l A_/‘[.‘[ = 2 2 > (4-21)
0 0 m(l+w.)+1p,., O
0 0 0 I

see (4-18) and (4-14).
Next we discuss the force k: this is the sum of the impressed force km
and the constraint force @c. Further on, the impressed forces can be divided

into the spring force k,, the weight force k, and the tangential force Kk, :

k:km +I_€c: _k_m=ks+.]£w+kt - (4—22)

10



The forces k, and k, easily are found by means of fig. 2-2:

T
k, =—[cxu, c,v,ew, cllp, O,C,Ifly] , (4-23)
k,

=[0,0,G,0,0,0] . (4-24)

The forces k, and k, are determined jointly. Observing fig. 4-1 we find

£ [ r
Y, |=-L,| T, =_£a‘|:;:l_£anj (j=12) , (4-25)
B/
Z N;
where
1 0 0
L:[Ly,znj], L,=/0 cosy; |, L,=|£siny;|. (4-26)
0 Fsiny, cosy ;

We call {3 the radius vector in (O,x,y,z) from O° to the contact point Aj:
T T
r)=[&, £(®-n)-v,r+{,-w] +0,=[0, 28, 1] +0,. (4-27)

Then we can write
2 [ F XJ'
E+k =117 . (4-28)
Z}

Combining this with (4-25) yields

k =-D|T.T, L0 T k=D [N.N] (4-29a-b)
where .
I T r T
Q,=[~:" ot ] Q,,=[~:"‘ rait } : (4-30a-D)
nly, rl, L, r,r,

The tangential forces T;l,...,];z will be discussed in sec. 6, whereas the

normal forces N,,N, are constraint forces, which can be found in the

following way. Inspecting (4-18), (4-30b), (4-26) and (4-27) yields the
relation

J'D,=0

> (4-31)

which also can be derived from the fact that in a contact point the power of
the constraint force is zerc. Combining (4-29b) and (4-31) yields

JTk, =0 . (4-32)

From (4-19) and (4-22) we can reduce (4-13) to

MPJq =k +k +k, +k +k. . ' (4-33)

11



Premultiplying by lQiAlq and using (4-31) yields the relation
T 3 -1
Dy M7k, +k, +k, +k, +E,)=0 (4-34)

so that, together with (4-30b), Aﬁ and ]Vz can be found from the equation

2
The tangential forces depend on the creep and spin quantities, which

can be found by considering the kinematics of the system, to be dealt with
in sec. 5.
We still have to consider the equations of motion for the vehicle body.

N,
QiM“‘Qn[ N‘] =D M7k, +k, +k, +E,) - (4-35)

Because it is purely translating with the constant speed V, we are left
with just one equation:

L=-cu , (4-36)

x

L being the tractive effort which has to be applied at the body for keeping
its velocity constant.

5. Kinematics

The absolute velocity VYV, of zhe wheelset mass centre O is equal to the

velocity (4-3) increased with the velocity of the system (C%,x“)ggg):
T .. .7
Vo =V[],0,0] +[u,v,w] , (5-1)

The wheelset angular velocity @ is found from.gQ: (4-8):

* V T R Ve

w=Guw, =7[w,-1,—¢’] +[o. 0] (5-2)
In the following way these results can be combined:

h4 V T *'

[ "}=—[r,0,0,w,—l,—¢] +JVqg (5-3)

@ 4 -
see (4-17).

In the contact point j the velocity ¥; amounts to

_ ~ 0 ~0 Yo | .
V; =Y, +Q£j=[ga_1j][w 5 (5-4)

evaluation by means of (4-27), (5-3) and (3-34b) yields
=S fr Ay Foy

v.=V| -y +V' —ro’ ) (5-5)
Tytany ;F(V' —rg’)tany

12



Considering fig. 4-1 and making use of (3-40) we find the relation

Wuj /r 1 0 Fb .
W, |=Ljy,=V|-wcosy, |+ 003,:—"—’—’40 q . (5-6)
w. 0 00 0 O

n

so that I’an=0, as it should be.

We also need the angular velocity @, around n;; we easily find that

=Tl
w,, =Fr-siny ,+0, . (5=7)

The 01 terms can be determined without difficulties; however, they can be
omitted as compared with the 00 term.

6. The physical contact

In the present section we shall omit the contact point index j.
Kalker[3,4] has shown how in a contact point the tangential force can
be found. At first it is necessary to determine the Hertz contact ellipse.

Its longitudinal and lateral axes d and b can be found in the following
way; we omit the details.

From the radii 7,7, and r; (3-38) we determine the quantities A4,B,p,
and 7 by means of the formulae

A=y2r’ B=%ry—%r;’ ey

T =(4+B)/2, (6-2)
4-B

T = arccos| ——| . (6-3)
A+B

Then the quantities € and g are found from the transcendental equation
ez(Q—Q) (6-4
— == =cos7 , -4)
E

where the complete elliptic integrals C,D and E are functions of b:

Icos fsin’ 6d6 _’T sin” 046 (6-5a-b)
= (1-¢€*sin®6)" = { (1-e’sin’ )"’
/2
£= J-(l—e2 sin® 6)"*d6, (65
0

g=v1-¢€ . (6-6)

13



This enables us to find the axis ratio a/b:

alb=e for A2 B,

(6=7)
=1/e for A< B,

whereas the quantity

c=+ab (6-8)

is determined by

3(1-v)NpE
= |0 f= (6-9)
N Gz

V (Greek letter nu) being the contraction coefficient and G the shear
modulus (the latter notation being used only in the present section).

When the elastic constants for the two contacting bodies are equal, the
normal contact does not influence the tangential contact vice versa. For the
latter contact we first have to calculate the creep and spin quantities

v, =W, [V, v, =W, |V, p=w,/V, (6-10)
by means of (5-6) and (5-7). Then we put

v= Ui+l . (6-11)

Next we introduce the "reduced creep" and the "reduced spin" by

{=pojuc, x=polu (6-12)
and the creep angle & by
cosa=v, /v, sma=v,/v; (6-13)

moreover, the "reduced tangential force" by

fi=T/uN, f,=T,JuN . (6-14)

Here (4 1is the coefficient of dry friction.

The Kalker creep law enunciates that f; and ]; only depsnd on the four

reduced quantities a/b,a,{ and yx:

fo=rAa/b,0,8, ), f,=f(a/b,a. S, x) . (6-15)

They can be determined by means of Kalker's accurate programs DUVOROL and
CONTACT and his approximate prcocgram FASTSIM; the determination of ]2 and ]3

can be considerably accelerated by first preparing tables for these
quantities.

14



7. The equations of motion

The motion of the wheelset is determined by the differential equation (4-
20), the algebraic equation (4-35) and the creep law equations (6-15). The
equation system can be described in the following way.

We first introduce the vectors

’ X

e=[uzvy], y=x, z=|"| (7-1)
- 4
r t
t=[LuTn Lo o], n=[NuN] =) (7-2)
Then (4-20) reads schematically:

z =glzf) . (7-3)

whereas we can combine the 2 equations (4-35) for fﬂ,A& and the 4 creep law
equations (6-15) to

[=16) (7-4)

When the 4 coordinates and the 4 derivatives are given, we can
determine the 6 forces I,T.,N, by means of (7-4): this equation can be

solved iteratively by starting each iteration with the values of the 4
tangential forces belonging to the previous integration step. Then (7-3) is
solved numerically by means of the Runge-Kutta-Fehlberg 23 method. Further
details are given in the explication of the MatLab program scwlstnl.m

Note that the above-mentioned procedure allows us to find the values of
the tangential and normal forces already at the beginning of the first
integration step, which often is useful for plotting the numerical results.

8. Linearization

We have found that it is quite possible to linearize the equations of motion
in an exact way for the case that the parasitic motion is sco small that the
variations of the conicities, too, remain small.

In the linear case the four equations of motion (7-3) break up into two
sets of two equations: one set for the "symmetric motion™ (# and ) ) and one
for the "lateral motion" (V and ). For the linear equations a separate
integration program has been set up: scwlsetl.m For small initial values of
the displacements the results of the linear and the non-linear programs are
almost identical.

9. The case of double-point contact

In sec. 3 we already mentioned that for certain combinations of the rail and
the wheel prcfiles double-point contact is possible; we there indicated how
this problem can be tackled as far as the geometric aspect is concerned.

The dynamics of the problem are rather complicated. In fact, when
double-point contact arises, our model will show a discontinuous change of
the lateral wheelset velocity, resulting in a collision and a momentary
infinite value of the normal force in the additional contact point.

We think that a soluticn of the problem can be found by adding a
certain lateral elasticity to the rail, and to suppose that it is divested
from mass. Then during the contact in a second contact point the force

15



remains finite. There is a complication because now the number cof degrees of
freedom of the system is larger. However, it seems that this complication is
surmountable.

An investigation on the dynamics of the double-point contact 1is
nowadays performed in Delft and in Dnepropetrovsk simultaneously.

10. Concluding remarks

As we already mentioned in the introduction, we restricted the description
of the theory to the case of a tangent track, the vehicle body motion being
purely translational. It goes without saying that the investigation of the
wheelset motion on a curved track or on an irregular track is not very
meaningful when the parasitic motion of the vehicle body is not considered
at all. However, an adequate extension of the model by taking this parasitic
motion into account does not give rise to important complications.
Publications on such extended models will appear in due time.
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Fig. 2-1. The position of the wheelset and the vehicle body

Fig. 2-2. The forces which are applied at the wheelset
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Fig. 3-1. The displacement of the wheelset

Fig. 3-2. The rail surface
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Fig. 3-3. The surface of the right-hand wheel

P,
Py

Fig. 3-4. The relation between v and ¢ in the neighbourhood of a double-
contact point
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Fig. 4-1. The velocities and forces in the right hand contact point
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