
Applying Timed,
Staggered Pressure
Forces In a
Wankel-Principle
ADAMS Model.

Sam McDonald, TRW VSSI
Rohit Tangri, TRW VSSI
Ravi Guttal, Automated Analysis Corp.
Steve Mornelli, MDI

1998 European ADAMS Users’ Conference
November 18, 1998

ABSTRACT

 It is sometimes said, “Timing is everything!”, and ADAMS is a good tool for
helping to find causes of timing problems in mechanisms where timing is critical. In this
paper, a mechanism model is looked at with ADAMS. The modeling of the Wankel-
Principle mechanism in ADAMS, as well as the application of the pyrotechnic pressure
forces, the VARIABLEs used to trigger them, and the contact forces between the axle
and housing are discussed.

This paper shows three techniques that
have been useful in modeling multiple
state variable triggered pressure forces
driving a mechanism in an ADAMS
model. The three techniques described
here are:

1. Converting the pressure to a force.
2. Capture the beginning time(t0) of the

triggered pressure.
3. Modeling the contact between the

pawl and the axle.

The Model

The model is based on using the Wankel
principle to drive a piston around a
housing, which then uses a pawl to
engage a ratchet with a gear set on the
axle to transfer the pistons rotary action
to an axle.

The Wankel-principle allows a coupling
between the piston rotation and the
housing rotation that is not necessarily
1:1. Equation 1 shows the formula.

θθ pa
C ∗=

Equation 1.
Where θ a

is the rotational angle of the

axle, and θ p
is the rotational angle of

the piston, and C is the Wankel gear
ratio. This axle is connected to the
seatbelt webbing, which is then
tensioned due to this action. The driving
pressures are provided in the form of
pressure-time curves that are
independently triggered based on one of
the piston tip displacements. The model
is used to check the effects of differing
the trigger point for the initiation of the

pressures, and to investigate the forces
arising from initial pawl contact with the
axle.

Pressure Forces

The equation describing the force arising
from uniform pressure on a flat plate is:

PAF p
∗=

Equation 2.

Where F p
 is the force on the plate due

to the pressure, A is the area of the plate
and P is the pressure. In this model, the
pressure is a given spline, and the area
will come from the model graphics.
To get a good representation of the
forces arising on a given body, the body
surface itself needs to be modeled. In
ADAMS, this can be done with many
different graphics, but the most versatile
graphic is the SHELL graphic.

The SHELL graphic is a faceted surface
defined by specifying the coordinates of
the vertices, and then defining each facet
by connecting the vertices. The .SHL file
(the file that normally defines a SHELL)
looks like Figure 1.

4 1 1.00000
0.0 0.000 0.000
1.0 0.000 0.000
0.0 1.000 0.000
1.0 1.000 0.000
3 1 2 4
3 1 4 3

Figure1.

The first line in Figure 1 lists the number
of vertices, (4) the number of
elements/facets (2) and a conversion
factor that gets applied to the vertices.
The next four lines give the coordinates
for vertices one through four, and the
last two lines specify the two facets. The
first facet has 3 sides, and connects
vertices 1, 2, and 4. The shell in the
above example would be flat in the x-y
plane, with the facets normals in the
Reference Markers Z direction.

When a stereo lithography file is read
into ADAMS, it becomes a shell file.
Thus, Shell files are the easiest way to
get your information into VIEW.
Figure 2 shows the shell file used to
model the piston surface on which the
pressure acts in this model.

Figure 2.

The idea behind using the shell is to sum
up the individual forces on each of the
individual elements. The first step in the
summation is to find the normal for each
shell facet, and the find the area for each
shell facet. These parameters do not
change with time, and can be computed
once during the initialization flag. The
pressure is then coded as a special state
variable that can be ‘turned on’ when a

control variable reaches a certain point.
The variable triggering process will be
discussed in more detail in the next
section of the paper.

The shell is defined with respect
to a Reference Marker on the piston, and
the shell is fixed with respect to that
marker. The marker is also fixed with
respect to the piston, and so the normals
are invariant over time with respect to
the piston frame. The areas of each facet
are also time invariant. Only the pressure
will change with time. Thus, a force
vector for the shell can be determined
during the initial pass through the
GFOSUB and used throughout the
analysis, as long as the GFORCE’s
Reference Marker is on the piston.

If the bounding shell (or
polyline) is known, then the method can
be extended to determine the pressure
(with a few assumptions and the ideal
gas law.) throughout the process. This is
the logical next step, but was not done in
this model.

State Variable Timing

Many times it is desired to determine
when an event happens during the
analysis and use the time when the event
happens as a variable in some function.
It is not easy to do this using only
modeling elements from VIEW, or an
ADAMS dataset (though it is possible).
We desired to make the process easy to
set up, easy to understand, easy to use,
and easy to verify that it was working
correctly.

It was decided to use variables as
the method of data input. VARIABLEs
are bare FUNCTIONS that can have
initial conditions, can depend on any
other state variables, and can use a
VARSUB to handle the complicated

things. The technique we use is to
require three variables:

1. T0 VARIABLE which is to capture
and hold the desired value.

2. Triggering VARIABLE.

3. Value VARIABLE, provides the
value that will be held by T0

The value variable was initially
visualized as being set equal to time, but
could be any ADAMS State variable.
Currently the variables are set up
manually in View, but the desire is to
create an accompanying macro and
dialog box to finish making the setup
simple.

The variables will be set up
transparently to the VIEW user (Sorry,
dataset buffs) and will be modifiable in
the View environment. It is assumed
that the user will be utilizing results
output, which should automatically trap
for output of all three variables.

When the value of the triggering
VARIABLE goes negative at the end of
a converged integration step, the Value
VARIABLE gets its instantaneous value
trapped and stored. If the Triggering
VARIABLE is going negative and the
Value VARIABLE has not been set,
then the current value of the Value
VARIABLE is used. The storage of the
Value VARIABLE only happens in a
SENSUB.

The subroutines work in the
following fashion. The VARSUB calls a
subroutine in which the data is stored.
This parking subroutine will return the
stored value if the VARIABLE has been
triggered before, return the current time
if it has not been triggered, or return the
current value if the current iteration
shows potential triggering. The parking

subroutine is also called by the SENSOR
subroutine that will check to make sure
that the value stored will be from a
converged output step. This is a common
precaution that must be used in some
form whenever storing away state
variables in a subroutine for later use, to
ensure that bad data from an
unconverged step will not ruin the
simulation information from that point.

Figure 3.

Ratchet-Pawl Contact

Initially the contact between the
axle and the pawl was modeled with a
rotational SFORCE using a standard
type of rotational stiffness, multiplied by
a step dependent on one of the variables
mentioned above. This worked, but
induced unrealistic oscillations into the
piston motion. It was decided to go back
to detailed modeling of the contact. The
surface of the axle was modeled with a
closed polyline, and the pawl was
modeled with an open polyline. The
contact forces were modeled with one
GFORCE per part, with the vertices of
the I part contacting the lines of the J
part. Thus, the polyline to polyline

contact required two GFORCEs. The
polylines are shown in figure 3.

The GFORCES are easy to
define with the macro given in the
appendix a. This macro requires the user
to specify two GFORCE names, pick the
two polylines that are to come into
contact, and then select(create) a contact
array. The contact array is the same as
that used in the ADAMS 9.1 contacts. It
contains the information needed for the
impact function, as well as the coulomb
friction information.

Conclusions

The model was first correlated
with one set of pressure curves by
modifying a viscous torsion damper that
was used to represent the friction in the
mechanism. The timing of the triggering
of two of the pressure curves was then
verified. A further check on the
correlation will be to run the model with
the same friction coefficient and
different pressure curves, and then
verify that the results match.

Appendix A
Macros to define polyline-polyline contact

Setup2.cmd

Macro read file="cf_pp_g.cmd" macro=mac cre=yes
interface menubar read menubar=.gui.main.mbar file="new.mnu"
file command read file="xcplpl.cmd"

cf_pp_g.cmd

!USER_ENTERED_COMMAND contact_poly_poly
!HELP_STRING write the gforce statements for the surface contact.
!WRAP_IN_UNDO yes

!$CONTACT_NAME_I:T=new_general_force:a
!$CONTACT_NAME_J:T=new_general_force:a
!$POLYLINE_1:T=POLYLINE
!$POLYLINE_2:T=POLYLINE
!$CONTACT_ARRAY:T=ADAMS_ARRAY

defaults model model=($polyline_1.parent.parent)

if cond=(db_exists("sfm_contact_counter"))

else
 variable create variable=sfm_contact_counter &
 integer = 0
end

defaults model part=($polyline_1.PARENT)

variable create variable=junk string = (eval($polyline_1.parent))

if cond=(db_exists(junk//".poly_rm"))

 var cre var=ply1 str=($polyline_1.parent.poly_rm.remarks)

else

 if cond=(sfm_contact_counter==2)

 marker create marker=poly_rm &
 location = 0,0,0 &
 orientation = 0,0,0 &
 relative_to = ($’polyline_1’.parent) &
 comment = sfm_contact_array_3

 variable modify variable=sfm_contact_counter integer=3

 data_element create array ic_array &
 array= sfm_contact_array_3 &
 numbers = ($’polyline_1’.location)

 else

 marker create marker=poly_rm &
 location = 0,0,0 &
 orientation = 0,0,0 &
 relative_to = ($’polyline_1’.parent) &
 comment = sfm_contact_array_1

 variable modify variable=sfm_contact_counter integer=1

 data_element create array ic_array &
 array= sfm_contact_array_1 &
 numbers = ($’polyline_1’.location)

 end
 variable create variable=ply1
str=($polyline_1.parent.poly_rm.remarks)
end

defaults model part=($polyline_2.PARENT)
variable create variable=junk2 string=(eval($polyline_2.parent))

if cond=(db_exists(junk2//".poly_rm"))

 variable create variable=poly2
str=($polyline_2.parent.poly_rm.remarks)
else

 if cond=(sfm_contact_counter==2)

 marker create marker=poly_rm &
 location = 0,0,0 &
 orientation = 0,0,0 &
 relative_to = ($’polyline_2’.parent) &
 comment = sfm_contact_array_3

 variable modify variable=sfm_contact_counter integer=3

 data_element create array ic_array &
 array= sfm_contact_array_3 &
 numbers = ($’polyline_2’.location)

 else

 marker create marker=poly_rm &
 Location = 0,0,0 &
 orientation = 0,0,0 &
 relative_to = ($’polyline_2’.parent) &
 comment = sfm_contact_array_2

 data_element create array ic_array &

 array = sfm_contact_array_2 &
 numbers = ($’polyline_2’.location)

 variable modify variable=sfm_contact_counter int=2

 end

 variable create variable=ply2
str=($polyline_2.parent.poly_rm.remarks)
end

 force create direct general_force &
 general = $contact_name_i &
 i_marker_name=($polyline_1.parent.poly_rm) &
 j_part_name=($polyline_2.parent) &
 ref_marker_name=($polyline_2.parent.poly_rm) &
 user_function=1,1

 force modify direct gen &
 general = $contact_name_i &
 user=7,($contact_name_i.i_marker_name.adams_id), &
($contact_name_I.ref_marker_name.adams_id),($contact_array.adams_id), &
(eval(stoo(ply1)).adams_id),(eval(stoo(ply2)).adams_id)

 force create direct general_force &
 general = $contact_name_j &
 i_marker_name=($polyline_2.parent.poly_rm) &
 j_part_name=($polyline_1.parent) &
 ref_marker_name=($polyline_1.parent.poly_rm) &
 user_function=1,1

 force modify direct gen &
 general = $contact_name_j &
 user=7,($contact_name_J.i_marker_name.adams_id), &
($contact_name_j.ref_marker_name.adams_id),($contact_array.adams_id), &
(eval(stoo(ply2)).adams_id),(eval(stoo(ply1)).adams_id)

variable delete variable = ply1
variable delete variable = ply2
variable delete variable = junk
variable delete variable = junk2

New.mnu
….
…..

MENU1 TRW
 MENU2 Special_contacts
 BUTTON3 Polyline
 CMD=interface dialog display dialog=.gui.xcplpl
 BUTTON3 Other
 CMD=interface dialog display dialog=.gui.atry
MENU1 Help

…..

xcplcpl.cmd

!
interface dialog_box create &
 dialog_box_name = .gui.xcplpl &
 help_text = "Contact Poly Poly" &
 location = 650.0, 132.0 &
 height = 230.0 &
 width = 421.0 &
 units = pixel &
 horiz_resizing = attach_left &
 vert_resizing = attach_top &
 title = "Contact Poly Poly" &
 iconifiable = no &
 start_commands = &
 " int fie set fie=$_self.f_CONTACT_NAME_I
str=(eval(UNIQUE_FULL_NAME(\"General_Force\")))" &
 execution_commands = "contact_poly_poly &", &
 " ‘CONTACT_NAME_I = $f_CONTACT_NAME_I‘ &",
&
 " ‘CONTACT_NAME_J = $f_CONTACT_NAME_J‘ &",
&
 " ‘POLYLINE_1 = $f_POLYLINE_1‘ &", &
 " ‘POLYLINE_2 = $f_POLYLINE_2‘ &", &
 " ‘CONTACT_ARRAY = $f_CONTACT_ARRAY‘", &
 "if con=(\"$_2\" != \"\")", &
 " int fie set fie=$_2
str=\"$f_CONTACT_NAME_I\"", &
 " int fie set fie=$_3
str=\"$f_CONTACT_NAME_J\"", &
 "end" &
 decorate = yes &
 resizable = yes &
 grab_all_input = no
!
interface label create &
 label_name = .gui.xcplpl.l_CONTACT_NAME_I &
 location = 4.0, 4.0 &
 height = 25.0 &
 width = 154.0 &
 units = pixel &
 horiz_resizing = attach_left &
 vert_resizing = attach_top &
 justified = left &
 text = "Contact Name I"
!
interface field create &

 field_name = .gui.xcplpl.f_CONTACT_NAME_I &
 location = 160.0, 2.0 &
 height = 25.0 &
 width = 257.0 &
 units = pixel &
 horiz_resizing = expand &
 vert_resizing = attach_top &
 scrollable = no &
 editable = yes &
 required = yes &
 execute_cmds_on_exit = no &
 number_of_values = 1 &
 object_type = new &
 type_filter = general_force
!
interface label create &
 label_name = .gui.xcplpl.l_CONTACT_NAME_J &
 location = 2.0, 78.0 &
 height = 25.0 &
 width = 160.0 &
 units = pixel &
 horiz_resizing = attach_left &
 vert_resizing = attach_top &
 justified = left &
 text = "Contact Name J"
!
interface field create &
 field_name = .gui.xcplpl.f_CONTACT_NAME_J &
 location = 164.0, 78.0 &
 height = 25.0 &
 width = 257.0 &
 units = pixel &
 horiz_resizing = expand &
 vert_resizing = attach_top &
 scrollable = no &
 editable = yes &
 required = yes &
 execute_cmds_on_exit = no &
 number_of_values = 1 &
 object_type = new &
 type_filter = general_force
!
interface label create &
 label_name = .gui.xcplpl.l_POLYLINE_1 &
 location = 4.0, 31.0 &
 height = 25.0 &
 width = 154.0 &
 units = pixel &
 horiz_resizing = attach_left &
 vert_resizing = attach_top &
 justified = left &
 text = "Polyline 1"
!
interface field create &
 field_name = .gui.xcplpl.f_POLYLINE_1 &
 location = 160.0, 29.0 &
 height = 25.0 &

 width = 257.0 &
 units = pixel &
 horiz_resizing = expand &
 vert_resizing = attach_top &
 scrollable = no &
 editable = yes &
 required = yes &
 execute_cmds_on_exit = no &
 number_of_values = 1 &
 object_type = old &
 type_filter = polyline
!
interface label create &
 label_name = .gui.xcplpl.l_POLYLINE_2 &
 location = 2.0, 105.0 &
 height = 25.0 &
 width = 160.0 &
 units = pixel &
 horiz_resizing = attach_left &
 vert_resizing = attach_top &
 justified = left &
 text = "Polyline 2"
!
interface field create &
 field_name = .gui.xcplpl.f_POLYLINE_2 &
 location = 162.0, 105.0 &
 height = 25.0 &
 width = 257.0 &
 units = pixel &
 horiz_resizing = expand &
 vert_resizing = attach_top &
 scrollable = no &
 editable = yes &
 required = yes &
 execute_cmds_on_exit = no &
 number_of_values = 1 &
 object_type = old &
 type_filter = polyline
!
interface label create &
 label_name = .gui.xcplpl.l_CONTACT_ARRAY &
 location = 2.0, 164.0 &
 height = 25.0 &
 width = 160.0 &
 units = pixel &
 horiz_resizing = attach_left &
 vert_resizing = attach_top &
 justified = left &
 text = "Contact Array"
!
interface field create &
 field_name = .gui.xcplpl.f_CONTACT_ARRAY &
 location = 162.0, 164.0 &
 height = 25.0 &
 width = 257.0 &
 units = pixel &
 horiz_resizing = expand &

 vert_resizing = attach_top &
 scrollable = no &
 editable = yes &
 required = yes &
 execute_cmds_on_exit = no &
 number_of_values = 1 &
 object_type = old &
 type_filter = adams_array
!
interface push_button create &
 push_button_name = .gui.xcplpl.OK &
 location = 155.0, 197.0 &
 height = 25.0 &
 width = 76.0 &
 units = pixel &
 horiz_resizing = attach_right &
 vert_resizing = attach_bottom &
 label = "OK" &
 commands = "interface dialog execute dialog=$_parent undisplay=yes"
&
 default = true
!
interface push_button create &
 push_button_name = .gui.xcplpl.Apply &
 location = 245.0, 197.0 &
 height = 25.0 &
 width = 76.0 &
 units = pixel &
 horiz_resizing = attach_right &
 vert_resizing = attach_bottom &
 label = "Apply" &
 commands = "interface dialog execute dialog=$_parent undisplay=no"
!
interface push_button create &
 push_button_name = .gui.xcplpl.Cancel &
 location = 335.0, 197.0 &
 height = 25.0 &
 width = 76.0 &
 units = pixel &
 horiz_resizing = attach_right &
 vert_resizing = attach_bottom &
 label = "Cancel" &
 commands = "interface dialog undisplay dialog=$_parent"
!
interface separator create &
 separator_name = .gui.xcplpl.sep_1 &
 location = 4.0, 74.0 &
 height = 2.0 &
 width = 413.0 &
 units = pixel &
 horiz_resizing = attach_left &
 vert_resizing = attach_top

