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1– The problem: road noise simulation
The prediction and the optimization (reduction)
of the vehicle vibrations (low and high
frequencies 0-400 Hz) are an important goal in
the car optimization.
The vibration sources in a running vehicle are
different: an important effort is coming from the
interaction between the road/tyre/vehicle
ensemble. The simulation of this interaction (in a
running car over a road profile) can help the
understanding of the phenomena and can give
opportunity of sensitivity analysis and
optimizations without any physical constructions.
The full system to be implemented in the
road/tyre/vehicle ensemble has to be validated
(in time domain) taking into account signal in the
frequencies range of 0-400 Hz. This is the typical
range of the road-noise phenomena.
The simulation has to consider the real
characteristics of the single components (road,
tyre, and vehicle).

2 - The actors: road, tyres, and vehicle
It is important to define the actors (road, tyres,
and vehicle) in a way that reproduces the real
behaviour of the components.
 In particular:
 a) The road has to be represented physically

with the right profile in 3D: see fig 1;
 b) The tyre has to be defined considering:

b1) the real modal characteristics up to 400
Hz (dumping included)

b2) how the tyre “reads “ the road profile in
vertical , longitudinal (brush model).

c) The vehicle has to be represented taking in
account all the components influencing the
forces generation.

Fig. 1: example of 3D road profile obtained by
experimental laser profile-meter

3 - Modeling the actors
The actors have to be modeled considering that
the final road/tyre/vehicle ensemble has to be
used in a common code for the simulations. It is
simple to manage some pre-processor for the
sub-model, but the common code has to be able
to include easily the modeling of the single
different components. The more usefully code
for the simulation is a multi-body code
(ADAMS).
In the past, practical design and analysis of multi-
body, large displacement/small strain mechanical
systems has been difficult due to the limitations
imposed by commercial analysis software.  No
single software package was capable of "doing it
all", and the resulting approximations and tedium
of translating data among various packages
served as a barrier to those seeking to perform
the incorporation of flexible body information
into ADAMS, or generation of more accurate
component dynamic loads for FEM codes.
Such conditions led to the use of necessary,
though not always adequate, approximations by
practicing engineers: the use of Guyan reduction
followed by a forced mass lumping to model
flexible components in ADAMS, and the
"guesstimation" of critical dynamic loading
conditions in FEM code.  The recent introduction
of ADAMS/Flex has overcome many of the
problems associated with analysis of flexible
multibody dynamics by employing flexible
elements whose component modes-based data is
provided by finite element codes.
A procedure to realize the interface from FEM
code, as HKS/ABAQUS, to ADAMS is now
available.  It provides an output file (.fil)  for
quantities such as physical mass, modal mass and
stiffness, component modes, etc., for components
which had first been built as superelement
models.  An external translator utility (fil2mnf,
first prototype release) completes the process,
reading the .fil file, modifying it (it realizes the
orthogonalization procedure), and subsequently
writing the data into a form which could be read
as input to ADAMS (Modal Neutral File format).
More, the obtained .mnf file could be completely
managed by the new MNF toolkit (especially for
Invariant calculation and Graphic reduction),
obtaining a size-reduced .mnf file which contains
all flexible data for flexible multibody analysis.
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Interfacing a Finite Element program with a
Large Displacement Multibody Dynamics
program achieves two very desirable goals:

• ADAMS mechanical system model fidelity
may be dramatically enhanced when
component flexibility is accounted for

 • Realistic loads for a FEM analyses may be
obtained in a natural way by incorporating a
FEM model of a component in an ADAMS
mechanical system model and simulating in-
service events.

3.1 The Road
3.1.1 Current implementation
The road is shown ad a meshed surface which
penetrates into the Flexible tyre (see fig.2).
A new extended 3D contact algorithm is
currently under development at MDI, and can
take care of flexible contacting bodies.
Preliminary examples of application together
with a short description of the theoretical basis of
the algorithm are shown hereby.
The procedure for detecting a compenetration
condition between a Flexible Body and a meshed
triangular surface and could be summarized into
the following steps:

1. An high speed searching algorithm finds
potential road contact elements, described as
triangular polygons;

2. A vector line along the Z-axis of a Marker
belonging to the Flexible Body is drawn;

3. The intersection Point where the Z-axis and
the Road Surface intersect is computed (j-
point, see fig.1);

4. dz(i,j,i) and vz(i,j,i) are then computed as
outputs (j= computed road contact point);

5. A SFOSUB routine generates a force on i-
Marker based on dz and vz.

The speed of the searching algorithm is almost
independent from the number of road elements.
A search radius parameter can be supplied for
optimizing the search area.

i-markers on Flex Body

Road Profile

Flex Tire Profile

j-points on Flex Body

Fig. 2: detail of the deformation of the flexible
tyre on a road profile

3.1.2 On going development
To avoid situations like those presented below, a
new algorithm to detect compenetration between
ground irregularities and Flex Tyre needs to be
introduced. The Flex Tyre model is ideally
divided into several wedges:
• each wedge has a base constituted by i-

markers belonging to the deformable tyre
surface, and therefore its volume is
subjected to changes at each iteration step

• at every iteration, the intersecting volume
between the wedge and the 3D road profile
is computed

• by means of a look-up table derived from
FE, the resulting volume penetration load is
lumped to the nodes that constitute the base
of the wedge, proportionally to the distance
from the center of gravity of the penetrating
volume

• a proportional force is applied to each of the
base markers

3.2 Tyre –generality
3.2.1 Fea model: non-rolling tyre
The first step to describe the dynamic behavior
of the tyre is a finite element simulation. The
finite element model describes any geometrical
and physical characteristics of the tyre. The
dimensions and the complexity of the model
don’t allow the simulation in the time domain.
It is fundamental a good experimental
characterization of the static and dynamic
properties of the materials: all the data of the
model was obtained by experimental tests
performed both on rubber compound and
reinforcing materials. The compound is statically
tested with tensile, compression and shear
stresses to achieve a meaningful hyperelastic
formulation of the strong non-linear behavior.
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The dynamic characterization was necessary to
describe the frequency-dependent properties, in
terms of elastic and hysteretic behavior. The
reinforcing materials, such as carcass and belts,
have been also experimentally tested to achieve
both the positive part of the stress-strain curve
and the negative part, using a special
methodology and device set up by Pirelli. In
figure 3 is shown an example of the dependence
of the elastic modulus from the frequency.
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Fig. 3: variations of the elastic modulus of a
tread compounds with the frequency.

The reinforcing material was implemented inside
the rubber element as additional stiffness as
function of the properties of the cords
themselves. The rubber compound properties
have been implemented using a hyperelastic
formulation (Mooney Rivlin).
The finite element model is made up of 20
thousands of brick elements (linear shape
functions, 8 nodes each element) that give
something like 80 thousands degrees of freedom.
The model was generated in an axisymmetric
way and it has been demonstrated that requires at
least 48 wedges to be able to properly evaluate
the eigenfrequency up to about 150 Hz. In this
specific case an 80 wedges model was built to
investigate higher frequencies, up to 400 Hz. The
higher is the maximum frequency of interest the
finer should be the mesh of the model and the
longer is the computational time. In figure 4 is
shown an example of mode shape at 131.4 Hz.
To represent the real static working conditions of
the tyre, it was carried out a preliminary set of
analysis like the mounting on the rim, the
inflation and the deflection with a specified
vertical load. These analyses show strong non-
linearity due to the contact kinematics and to the
materials. After these analysis some steady state
analysis was performed in order to calculate the
modal damping associated to each eigenvalue,

comparing the amplitude of the response at the
eigenfrequencies with respect to the static
response.
The steady state analysis is a linearized response
to harmonic excitation based on the physical
degrees of freedom of the model. The response
can be achieved through the direct solution of the
equations in matrix form, where the stiffness and
damping matrices are updated each frequency
since the definition of the isotropic linear
viscoelasticity allows evaluating stiffness and
damping matrices as function of the frequency.
While the response in this analysis is for linear
vibrations, the prior static response is strongly
nonlinear and the initial stress effects (stress
stiffening) are included in the steady state
response.
The finite element model can give any kind of
data about any nodes of the model itself but it is
a huge model, unable to be used for time domain
dynamic simulations. As a consequence a strong
reduction of the physical degrees of freedom is
needed. Since the tyre acts as an interface
between the road and the hub it is advisable to
retain just the degrees of freedom of the nodes
involved in the foot print area and the degrees of
freedom of the rim, which has to be linked to the
hub.

Fig.4: Example of mode shape, which occurs at
131.4 Hz.

The reduction of the degrees of freedom can be
made, once known the stiffness matrix and all the
applied loads, through a rearrangement of the full
stiffness matrix. This procedure uses no
approximations. The nonlinear response, due to
the materials and the contact between tread and
road surface, which occurs during the static pre-
analysis, has been defined as pre-load prior to the
elimination of the degrees of freedom. As a
consequence it has took into account the
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stiffening behaviour by pre-loading in a
geometrically nonlinear analysis: stress stiffening
effects has been included when the rearranged
stiffness matrix was created.
While the reduced stiffness matrix uses no
approximations, the mass matrix needs more
degrees of freedom than just the ones, which
refer to the nodes, involved into the contact
patch. Therefore some eigenmodes amplitude
was restrained as additional degrees of freedom:
in this way the choosing of the retained degrees
of freedom is no longer critical in order to get an
accurate mass matrix representation.

3.2.2 The brush model: rolling-tyre.
Discretisation of the tread pattern

The road unevenness excites the tyre dynamics,
and slipping phenomena in the contact patch can
arise. For the simulation of these phenomena in
the foot print area, in lateral and tangential
directions, a discrete brush model has been
implemented. This model takes into account the
main characteristics of the tread: slip stiffness,
pitch sequences and size of the contact zone.

The discrete brush model is represented as
individual elastic elements linked to the tyre belt.
Tangential and lateral slip velocities can result
from the tyre dynamics, and consequently the
tread elements will have a shear deformation.
The maximum deformation of the tread elements
is limited by the friction coefficient between the
tyre and the road.
Nevertheless the values of longitudinal and
lateral slip, due to the roughness of the road, are
pretty small; therefore all brush elements in the
contact patch adhere to the road surface.

The elastic forces, which arise in the contact
zone, depend on the slip stiffness, in tangential
and lateral directions, and the shear deformation.
These forces are function of the contact patch
size, the tread pattern and the elastic modulus of
the tread compound.
In particular the size and shape of the contact
depend on the tyre structure; the stiffness of the
tread elements is affected from the pitch
sequences of the tread pattern. Finally, the slip
stiffness of the tread elements also depends on
the tread compound.

According to the Lagrange method, we follow
the tread elements from the entry to the exit of
the contact. In fact, just the elements in contact
with the road will generate forces during rolling.

The tread elements will enter and leave the
contact patch with a law that depends on the
pitch sequences.

In this case, the tread has been discretized with
“n”  elements and their deformation and position
in the contact patch is considered only at discrete
time intervals. For example, in the tangential
direction, at a time interval ∆t, the position of the
tread element increases by ∆s, and the
deformation by ∆u. Denoting with Vr the rolling
speed, the following relationships subsist:

∆s = Vr∆t

∆u = Vsx∆t

where Vsx  is the slip velocity.
For the generic tread element i in the contact
zone, the position and the deformation change
during the rolling:

si (t + ∆t) = si (t) + ∆s

ui (t + ∆t) = ui (t) + ∆u

The deformation multiplied for the tread element
stiffness Ccpi gives the local longitudinal force:
the sum of these local forces over the contact
patch gives the total longitudinal force at a time t
:

F C uc cpi

i

n

i= ⋅
=
∑

1

The tread elements stiffness Ccpi has been
determined by an internal Code (user subroutine
written in Fortran and implemented in ADAMS),
that is able to calculate those stiffness directly
analyzing the tread pattern in the contact zone.
The same procedure applies to the tangential
force to evaluate the lateral force. In this case,
the tread element deformation is due to the slip
velocity Vsy in the lateral direction.
Therefore the simple modal model can simulate
the rolling conditions when linked to the discrete
contact model. In fact, the modal model
reproduces only the eigenfrequencies and
eigenmodes of the non-rolling tyre. All the
dynamic effects affected from the forward
velocity are neglected, such as, for example, the
increase of the first longitudinal mode relative
damping with the velocity of the of the tyre
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closed to 35 Hz. As well known, the relative
damping variation depends on the slip
phenomena in the contact patch.
For these reasons a discrete brush model (fig. 5)
has been used as tyre-road interface of the modal
model.
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a

Fig.5: discrete brush model

3.3 Vehicle
The results presented in this paper are obtained
using a fixed hub (cleat test) or a simple single-
suspension (running on uneven road). However
we can join the flexible body in each way to the
chassis (through rigid joint or taking into account
of hub compliance) of a full vehicle model.

4. Component mode synthesis
The following chapters describe how the flexible
body is taken into account in the ADAMS
environment

4.1 The CMS approach (Component
Modes Synthesis)

A brief review of dynamic reduction techniques
in FEA code follows: this section will present
Guyan Reduction, Generalized Dynamic
Reduction (GDR) and Component Modal
Synthesis (CMS).
Let’s define the f-set, the degrees of freedom
which are unconstrained (free) in dynamic
analysis.  These are what remain of the g-set (all
of the structural, or grid, degrees of freedom)
after removal of the s-set (degrees of freedom
eliminated by single point constraints) and the m-
set (degrees of freedom eliminated by multipoint
constraints). The f-set equations of dynamic
equilibrium are

      ffffffffff PuKuBuM =++ &&&           (1)

In dynamic analysis, we often have more finite
element data than is necessary to obtain adequate

estimates of dynamic behavior. We may reduce
our solution set by partitioning the f-set into the a
(analysis)-set and the o-set (omitted degrees of
freedom):
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Though equally valid for non-superelement
(residual structure only) models, eq. (2) is most
familiar in the superelement context, with the a-
set frequently referred to as the exterior, or
boundary, degrees of freedom and the o-set, the
interior.

For static only, we have two sets of equations in
two unknown variable sets (a and o), allowing a
unique (uncoupled) solution for each.  Solving
for the lower partition of eq. (2) without mass
and damping leads to:

         oooaoaooo PKuKKu 11 −− +−=                (3)

or,

                  o
oaoao uuGu +=                        (4)

Note that the solution for the ou interior degrees

of freedom consists of two parts: the

aoauG response to boundary displacements, and

the o
ou , or fixed-boundary solution to interior

loading.   The static condensation results in eq.
(4) suggest a framework for approximating the
coupled dynamic equations in (2).

A consistent way of presenting the various
approximate dynamic reduction techniques is
through the use of symmetric transformations.
We can introduce the transformation:
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which is just the static condensation in matrix
form.  Eq. (5) and its time derivatives can be
used to transform eq. (2), which, ignoring
damping, is:
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The advantage of eq. (6) is that the dynamic
reduction techniques in FEM code can all be
conveniently explained in terms of their

corresponding o
ou  approximations.

Guyan Reduction simply assumes:

aoao uGu &&&& =                             (7)

or, 0≡o
ou&& .  The resultant upper partition of eq.

(6) can thus be immediately solved for the a-set
degrees of freedom.
Generalized Dynamic Reduction uses

approximate mode shapes to approximate the o
ou

degrees of freedom (Experimentally obtained
mode shapes could be used just as well.).
Component Modes offer a further logical
extension by using the o-set eigenvectors to

approximate o
ou . We can simply write:
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The q-set has been introduced to represent
generalized degrees of freedom in dynamic
analysis. The q-set is included as a partition of
the a-set, and the t-set partition of the a-set is
used to more clearly identify the "total" physical
degrees of freedom on the boundary, hence:
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where the “prime” in au′  has been introduced

simply to distinguish the previous physical
boundary degrees of freedom only set from the a-
set.  Each column of the first partition of
Γ represents the component's displacements due
to boundary motion and are frequently referred to
as "constraint modes."  The modes of the second
partition are, upon proper transformation,
referred to as the fixed boundary, or

"component" modes.1  Use of the coordinate
transformation (9) yields a set of compact,
stiffness-uncoupled, equations of a-set dynamic
equilibrium.  Since the basis vector set of (9) is
linearly independent, one possible solution
technique is to first orthogonalize the set and
then solve the resulting uncoupled equations.

4.2 FEA data conversion to Adams
interface
4.2.1 Integration of component flexibility in
ADAMS
A high level goal when implementing flexible
bodies in ADAMS was that a flexible body could
be integrated into a mechanism in a way similar
to a rigid body and interact with the mechanism
through ADAMS joints and forces.
Early in the development cycle, the need for
Component Mode Synthesis became evident.
Attempts to model the effect of attachments to
the flexible body using only component
eigenvectors required an extremely large number
of eigenvectors to be considered.  While the
ADAMS implementation of modal flexibility is
general enough to accept any kind of mode
shape, the FEM code interface has been set up to
export the computationally-determined
component modes.
Though c-set degrees of freedom are provided in
component modes synthesis, they’ve typically
not been used when generating modes for input
to ADAMS/Flex. (Though their use holds
promise.) Since the resulting simplification
yields the familiar Craig-Bampton modes, this
section will refer to them as such.  There have
been certain challenges however:

1.) Embedded in the Craig-Bampton modes are 6
rigid body modes.  Since ADAMS provides its
own large displacement rigid body motion, these
modes need to be removed from modal basis.

2.) The constraint modes partition are static
correction modes and provide no information
about the resonant frequencies of the degrees of
freedom that they provide.  An ADAMS user
needs to have information about the frequency
content contributed by a flexible body mode so
that response in these frequencies may be
                                                          
1 Free-free modes are allowed in component modes via c-set
degrees of freedom.  The transformation:  
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eliminates redundant singularities.
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controlled to ensure numerical integration
robustness.

3.) Craig-Bampton constraint modes can not be
safely disabled without imposing an unacceptable
constraint effect between the boundary degrees-
of-freedom.

Orthogonalizing the Craig-Bampton basis of
modes eliminated all of these problems.  All
modes get an associated frequency and the rigid
body modes show up as zero frequency modes
and can be easily disabled.  A user can choose to
enable or disable modes for the dynamic
simulation on a mode-by-mode basis.
Let’s start to describe of how inertia, stiffness,
damping and mode shapes of the flexible body
are handled in ADAMS.
 Inertia:
The mass matrix of a flexible body in ADAMS is
not constant.  As the flexible body is deformed,
the center of mass shifts, and the inertia tensor
changes. These effects are accounted for in
ADAMS by formulating the mass matrix in terms
of inertia invariants which are computed in a pre-
processor.  The large translational DOFs, the
large rotational DOFs and the modal DOFs are
coupled through this mass matrix.  This is the
mechanism by which spinning gives rise to
deformation, etc.

Stiffness:
The generalized stiffness from the finite element
analysis is diagonalized and used directly by
ADAMS.

Damping:
ADAMS uses modal damping specified
separately by the user as a fraction of critical
damping.  Damping can be specified on a mode-
by-mode basis.  Users are encouraged to use
damping to control modal response.  In other
words, it is recommended that rather than
disabling a mode, because it is assumed to lie
outside the frequency range of interest, that the
mode should instead be critically damped. This
will eliminate the dynamic response of this mode
while allowing ADAMS access to it to satisfy
boundary conditions.

Mode shapes:
After using the mode shapes to compute the
inertia invariants, the modes do not contribute in
their entirety to the ADAMS simulations. Only a
subset of each mode shape is passed to the

ADAMS solver, the subset that corresponds to
those nodes where connections have been made
or where forces are being applied.  This allows
the solver to satisfy boundary conditions at
connections and to project the applied load on
the mode shapes.

4.2.2 Used FEA-ADAMS Interface
The used interface is based on specific ABAQUS
instructions and an external translator utility
function.  After ABAQUS run, the provided
output (.fil) contained generated superelement
data for the flexible component,; it has been used
a good beta version of Abaqus translator ( By
HKS) that converts this output into a form
suitable for ADAMS.
Output quantities for each superelement include:
•   Node data
•   Element connectivity
•   Constraint data
•   Physical mass
•   Modal mass and stiffness
•   Component modes
The above allows a complete characterization of
the mass and stiffness properties of a part in
terms of its modal components (and, of course,
physical mass), as well as graphical display of
the part itself (via grid and element data) within
ADAMS.

ADAMS uses a special flexible body description
file called the Modal Neutral File (MNF) to
communicate with a variety of Finite Element
Programs. It has been used a beta version of a
translator (by HKS). The translator extracts node
locations, element connectivity, nodal mass
information mode shapes and the corresponding
generalized mass and stiffness from the .fil file
and deposits this information in the MNF. In
addition to formatting the MNF the routine
provides the orthogonalization of the component
modes
Moreover it has been used a MDI toolkit: a set of
library functions suitable for reading, modifying
and writing the MNF platform: the User can
modify the original .mnf file performing mesh
simplification and computing the inertia
invariants.

4.3 Next improvements
The FLEX_BODY in ADAMS has deformations
that are described via a superposition of mode
shapes.  In the current implementation, the modes
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that make up the modal basis of the
FLEX_BODY are assumed to
have been obtained by linearizing the flexible
body about an unstressed configuration, as is
customary in linear finite element analysis.
This implementation is obviously a limitation for
users of nonlinear finite element analysis codes
like ABAQUS.  An ABAQUS user is likely to
wish to linearize the nonlinear finite element
model about an operating point which is different
from the undeformed position.  In this particular
case, as the tyre comes into contact with the
ground, it reaches a state of nonlinear
deformations which ABAQUS can use as an
operating point for the linearization.
The source of this limitation is that a
linearization about a stressed state contains an
associated modal preload which currently the
MNF format does not accomodate and
ADAMS/Solver does not account for.
The following ingredients are missing to allow
ADAMS and ABAQUS to correctly
communicate and process flexible components
represented by modes obtained in a stressed
state:

1. ABAQUS must export node locations to the
MNF that correspond to the deformed
locations of the nodes, not the input
configuration;

2. The MNF format must be enhanced so that it
can account for generalized forces
associated with the deformed configuration
and ABAQUS must compute these forces
and store them in the MNF;

3. The ADAMS/Solver must be enhanced to
account for this preload.

Note that any future removal of this limitation
will probably keep a requirement that the
linearization is performed at an operating point
that corresponds to a static equilibrium.
To overcome this limitation, the current
simulation in FE is done accordingly to what is
described in section. This means the Tyre model
goes through the following sequence of
calculation steps:
1. inflation at the nominal pressure;
2. squeezing against a rigid surface which

represents the road;
3. static concentrated loads on contacting

nodes based on resulatnt forces coming from
2

At this point the Mode extraction is requested.
The model is ouput in the undeformed

configuration shape, with a linearized stiffness
corresponding to the one at the end of step 3.

5 Adams implementation of the sub-
models
5.1 Flexible Body
In order to implement into ADAMS the Pirelli
Flexible Tyre model, it has been developed a
first release of a customized ADAMS/View
interface, including macro and command files.
From the mnf file (after fil2mnf routine),
ADAMS reads all modal data to build up a
Flexible body, but it doesn’t read the Ids of the
interface nodes. Providing an external file which
contains the hardpoints (nodes) list of the
Flexible Body, the implemented macro
automatically creates markers on nodes (hub and
foot-print area) and all the objects for Road-Tyre
interface: dummy parts, joints, motions, impact
forces, state variables, design variables,
measures, etc.
A modified Flexible Body dialogs box (see fig.
6) permits the User to select the Node list for the
Flexible Tyre and to decide where to attach the
Tyre (ground, chassis, etc.)
In order to get kinematics information from
ADAMS analysis and to correctly define the
brush model of the tyre an equivalent rigid tyre
(having equal mass and inertia information,
location and orientation) has been created. It is
joined to the chassis through a Revolute joint
plus a Motion or an Applied Torque, in
dependence of type of the performed analysis
(deflection, cleat tests, running on uneven road,
etc.).
The resulting model after the execution of the
macro is represented in figure 7: it is possible to
see the rigid part coaxial with the flexible body,
the markers in the footprint, the forces and
motions applied on the markers.
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Fig.6: customized dialogs box for the automatic
creation of the Flexible Tyre Model

Fig.7: flexible tyre model after the execution of
the macro

The impact forces applied on each hard point of
the footprint area drive the deflection; the user

can decide the deflection time and the deflection
amplitude.

5.2 Brush model
To better manage the brush-model behavior,
earlier described, we have written an user Adams
variable subroutine which receives as inputs the
current angular speed of the tyre, the rolling
radius and the speed of the hub and returns the
global longitudinal slip force. This one is
correctly splitted on the nodes of the footprint,
moreover the resultant torque (force time rolling
radius) is applied on the hub of the equivalent
rigid tyre part. In this way it is possible to
calculate the ‘rigid’ contribution of the tyre to the
variations of the slip. It is useful to simulate
acceleration/deceleration maneuvers of the
vehicle.

5.3 Cleat test simulations
The cleat tests simulations are carried out as in
the Pirelli comfort approach. The basic curves
are read from external files as splines and they
provide to excite the flexible tyre.

6 Models Validations
6.1 Generality
It has been modeled a 195/65 R15 tyre size.
The below paragraphs show the different models
validations: at first the proposed tyre model static
and modal validations, the
The following paragraphs show the validation of
the model running over: a) single obstacle, b)
single obstacle, c) real road.

6.2 Static and modal validations
In the figure 8 there is the comparison between
the static deflection curves obtained by Abaqus
and ADAMS.
In figure 9 and 10 there the eigenfrequencies
calculated in Abaqus and ADAMS with different
boundary conditions. In both the simulations the
hub of the flexible body is constrained, then in
the case of the figure 9 the nodes of the footprint
are free, in the case of the figure 10 the nodes are
constrained.
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Deflection curves
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Fig 8: comparison between static deflection
curves obtained by Abaqus and ADAMS

Comparison between the Eigenfrequency calculated by ABAQUS and ADAMS
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 Fig 9: comparison between eigenfrequencies
obtained by Abaqus and ADAMS.
Footprint nodes free.
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 Fig 10: comparison between eigenfrequencies
obtained by Abaqus and ADAMS.
Footprint nodes constrained.

It is possible to see the good correlation between
the two approaches  (Adams, Abaqus).

6.3 Single obstacle
The obstacle is a single triangular obstacle high
15 mm and long 20 mm.
The simulation has followed the  “basic curve “
approach.
Figures 11 and 12 show the experimental data,
i.e. the basic curves: vertical and longitudinal
force variations in fig. 5.5, and Rolling radius
variation in fig. 5.6. Those data refer to a vertical
load of 450 kg.
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Fig.11: vertical and longitudinal forces at 425
Kg (basic curves measured at 3 km/h)
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Fig.12: rolling radius variations at 425 Kg
(basic curves measured at 3 km/h)

Figures 13 and 14 report the Adams simulation
and experimental results, regarding the cleat test
at fixed hub and at 30 km/h.
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Fig.13:  experimental and calculated vertical
force at 30 km/h

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

time [sec.]

lo
ng

it
ud

in
al

 fo
rc

e 
[N

]

calculated
experimental

Fig.14: experimental and calculated
longitudinal forces at 30 km/h

The experimental and the simulated results are
comparable.

6.4 Running on uneven road
The simulation has been performed linking the
flexible tyre to a simple mono-suspension with a
lumped mass of 400 kg. In this case the
experimental data are not available. In figure 15
is shown an example of the results of the
simulation: there is the radial acceleration at the
hub.

Fig.15: rim acceleration in Z direction in road
noise simulations.

7 Conclusions
An automatic procedure to create a modal model
tyre is presented. The linking of this model with
a multibody vehicle model is very simple
The MNF format must be enhanced so that it can
account for generalized forces associated with
the deformed configuration and ABAQUS must
compute these forces and store them in the MNF.

A new extended 3D contact algorithm is
currently under development at MDI; it detects
the compenetration between ground irregularities
and the Flexible Tire.
The model has to be fully validated for the road
noise simulations; at the moment no experimental
data are available in order to do a comparison.


