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Many electromechanical products can be modeled with rigid and flexible bodies interconnected
with bilateral constraints. In reality, a vast class of systems can only be realistically modeled with
the previous ingredients plus the addition of unilateral contact conditions. In particular we refer to
two significant categories: circuit breakers and robots. The first, spanning all the range of voltages,
are modeled by kinematic chains with variable topology, undergoing very fast motion. The catching
or the unlatching of the chain or of its parts is guaranteed by unilateral constraints, and require the
modeling of contact/impact phenomena. The second category is represented by mechanisms
characterized by open chains undergoing fast motions, with some points following complex paths,
often performing highly sophisticated mechanical operations. Robots usually require position and
force control, whose success depends on the modeling of phenomena such as friction, backlash
and contact.
The modeling of contact/impact processes represents an important topic in advanced multibody
simulation, and is crucial for an effective use of this technology in many industrial applications. A
numerical procedure with unilateral contact modeling capabilities, needs to address the following
problems:
•  give a mathematical representation of the geometry of the contacting parts;
•  solve the minimal distance problem between the curves or surfaces where contact occurs, in

order to evaluate the position of the candidate contact points;
•  apply, at the contact points, the interaction forces defined by a constitutive law that is

appropriate for the phenomenon being investigated.
In this paper we present a procedure that addresses all the above mentioned areas of concern,
with the specific goal of flexibility, generality, robustness and ease of use.
In particular, note that the position of the contact point is generally an unknown of the problem that
depends on the dynamics of the mechanism, and cannot be stated a priori. In fact, it is the very
motion of the parts that defines the contact points.
Presently, this problem is usually solved in ADAMS for the 2D case by applying the so-called
“Dummy Part Technique” (DPT). Using this approach, a fictitious body is connected to each one of
the contacting bodies, and it is constrained to slide on the curves that describe the geometry of the
parts by means of two PTCV (“point on curve”) constraints. These constraints are so close that the
connecting segment approximates the tangent to the curve. Two primitive joints (e.g., two
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reciprocal INLINE or one INLINE and one PARALLEL� AXIS), force the fictitious bodies to lie
reciprocally on the normal of the related curves. The technique, although quite effective in simple
cases, presents some drawbacks:
•  it needs a cumbersome modeling work, which implies a heavier than necessary work-load for

the user;
•  it does not solve the minimum distance problem in a rigorous way and lacks numerical

robustness, which in our experience usually hampers the solution of models of industrial
relevance;

•  it presents a difficult generalization to the 3D case.
In the following pages, we detail our proposed procedure for avoiding the current limitations of the
software in this area.
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The approaches to the modeling of unilateral contact conditions fall into two main categories. The
first one considers an impact as an impulsive phenomenon of null duration [6,14,7]. The
configuration of the system is “frozen” during the impact, and an appropriate model is used for
relating the states of the system immediately before and immediately after the event. There are two
alternative flavors to this theory: Netwon’s method and Poisson’s method. The first relates the
relative normal velocities of the contacting bodies through the use of an appropriate restitution
coefficient. The second divides the impact in two phases: a first compression phase brings the
normal relative velocity of the bodies to zero through the application of an impulse at the contact
location. Then, an expansion phase applies an impulse of opposite sign. The magnitude of the
second impulse is related to the magnitude of the first one through a restitution coefficient.
Although this method has been used with success for multibody contact/impact simulations [11], it
is quite clear that it seems most suited to the modeling of events of very short duration.
Furthermore, its implementation requires the interruption of the numerical integration of the
equations of motion when an impact is detected, followed by the solution of a linear
complementarity problem that implies the  manipulation of entire descriptive matrices of the whole
multibody system prior to the restarting of the integration process. The resulting procedure would
not be easily implemented in ADAMS through the standard user-accessible channels.
A second approach models the contact/impact condition as a finite duration event, and tries to
describe the time history of the resulting interaction forces for the whole duration of the
phenomenon [8,10,3,1].  This is achieved by introducing a suitable phenomenological model for
the contact forces, that are usually expressed as functions of the inter-penetration, or “approach”,
between the contacting bodies. Extension of this methodology to the case of contacts with friction
and rolling is straightforward [2], although it will not be detailed here. The computation of the
approach at each time instant of the simulation is achieved solving the same set of holonomic
constraints that express the minimum distance problem when the bodies are not in contact. As for
all the contact models, we have even in this case a complementarity problem: either the sum of the
relative distance and the approach is greater than zero, and in this case the contact forces are null,
or the same sum is null, and the relative distance is equal and opposite to the approach (inter-
penetration) with interaction forces that are not null.
In this work, the second approach is adopted and the contact event is assumed of finite duration.
ADAMS already implements a module with the required functionality for modeling the interaction
forces: IMPACT. This module allows to describe in very general form arbitrary constitutive laws
relating the contact forces with the approach and its time derivatives. The activation of the module
is triggered by the detection of inter-penetration between the contacting bodies, as a result of the
minimum distance problem.

�	�	������	����
��
����	��
������
	��
����	���

Following the methodology just outlined, we have seen that we need to provide a mathematical
description of the geometry of the contacting parts. This will allow the solution of the minimum
distance problem, that in turn will trigger the activation of the interaction forces between the



3

contacting parts. Therefore, we need some kind of parameterization of the geometric entities of the
form:
•  2D case x-y:  → (x ( ), y ( )),
•  3D case ������� �� ��→����� �� 	����� �� 	����� �� 		�

���� ��� �� ���� �� ��� ���� ������ ����������� ��� ���� ������� �������� ������ 
����� � ���� � ��
parametric coordinates.
It is clear that the parameterization adopted should be as general and flexible as possible, in order
to allow the greatest range of possible applications. One parameterization that is broadly used for
its generality and flexibility is based on Non Uniform Rational B-Splines (NURBS) [4,13], often
used for CAD solid modeling. Based on this representation, it is possible to evaluate all the
geometric attributes of the entities, for example tangents, normals and point locations. These
geometric attributes will then be the ingredients of the minimum distance problem that is solved at
each time instant of the simulation.
We have implemented a NURBS-based parameterization of curves and surfaces in a library of C
routines. This library is linked with the rest of the solver, and provides the needed geometric
functionalities to the “user defined subroutines” implementing the minimal distance problem.
From the user’s viewpoint, the geometric description proceeds through the positioning of a suitable
number of control points, following the NURBS conventions. Graphic display of the geometry is
automatically obtained by using some of the ADAMS graphic tools. Note that there is no coding
required by the user, that will simply use the modeling functionality of the provided routines for
describing the particular geometry being analyzed. The details of the whole process are completely
hidden to the user, that operates through a proper ADAMS macro.
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Letting ' be the minimal distance between two entities, we say that they are in contact if

' ≤ 0. (1)

Hence, at any integration time step, the distance ' has to be evaluated and a contact force ( must
to be applied as

()δ*'+�(*�&��,&��,,&-+, (2)

where �).' is the approach between the entities and δ*'+�is a Kronecker switching function, null for
positive '� To decide on the application of the impact force, we have to evaluate the minimal
distance between the entities. Let us formalize the problem that has to be solved at any time step
to find the point eligible for contact in both the 2D and 3D cases [11,12].
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2D CASE

The regular curves ����⊂  R2 (��= �����) are defined through the mapping ��: ���� R2  as

�� := {  � ∈  R2    : � ∈  �� (ξ�)   ∀  ξ�∈ ��⊂  R} ,

where ξ� is the curvilinear coordinate of the curve and ��∈ C1(���. The points eligible for contact are
then obtained by solving the nonlinear system:

)4(,0)(),(

)3(,0)()(
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where, in accordance with Figure 1, �,   and , are the vectors representing respectively the
tangent, normal and bi-normal to the curves. Equation (3) forces the normal vector on �� to be
perpendicular to the tangent vector on ���, while equation (4) forces the distance vector � to be
perpendicular to the tangent vector on ���. The nonlinear system is solved by two values / and //

corresponding to the minimal distance points on the curves.
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3D CASE

The regular surfaces ����⊂  R3 (��= �����) are defined through the mapping ��: 	��� R3  as

�� := {  � ∈  R3    : � ∈  �� (ξ�,η�)   ∀  (ξ�,η�)∈ 	�⊂  R2} ,

where ξ� and η� are the curvilinear coordinates of the surfaces and ��∈ C1(	�). The points eligible for
contact are obtained by solving the following nonlinear system of equations
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In accordance with Figure 2, � and � are two orthogonal R3 vectors lying on the tangent planes and
  is the R3 vector normal to the surfaces. Equations (5) and (7) force the normal vector on �� to be
perpendicular to the tangent vectors on ���; equations (6) and (8) force the distance vector to be
perpendicular to the tangent vectors on ���. The nonlinear system is solved by the values /, /, //,
// corresponding to the minimal distance points on the surfaces.
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Surface //
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Once the minimal distance point have been evaluated, in both the 2D and 3D case, the minimal
distance value ' is then given by:

.����
  � ⋅= −

	�	��
��������	����

The minimum distance problem needs to be slightly reformulated in order to be implemented in
ADAMS using the functionalities provided by the “user defined subroutines”.  In fact, ADAMS
requires to specify a-priori the point of application of forces. This problem can be solved by
introducing massless dummy parts. Clearly, these additional parts must be of null mass in order
not to modify the dynamics of the system.  The dummy parts are constrained to move on the
curves or surfaces that describe the geometry of the contacting bodies, with axes x and y
belonging to the tangent plane and axis z aligned with the local normal. The minimum distance
problem is then defined using the axis system associated with the dummy parts. Furthermore, the
interaction forces are applied to the same parts [9].
In contrast with the DPT approach, each dummy part is in this case explicitly constrained to a
curve or surface through a set of rigorous kinematic conditions. These constraint relations are
implemented using appropriate UCON STATEMENTS and a UCOSUB SUBROUTINE [15].
������������� 	������!"#	����$���������������������������������������� I����� II�� I�� I�� II�� II in
the 3D case), which are the only remaining degrees of freedom for the dummy parts. The
constraint conditions are completely general, in the sense that they do not depend on the particular
parameterization of the geometry adopted.
A total number of 14 scalar constraint equations is written for the 2D case, that determine the 6
�������������������������������������������� I����� II parametric coordinates. For the 3D case,
we have 16 scalar constraints, corresponding to the 6 degrees of freedom of each dummy part
��������� I�� I�� II�� II parametric coordinates.
More precisely, we have in the 2D case:

)14(,

)13(,0

)12(,0

)11(,0

)10(,0

)9(,0

3

2

3

����

�����

���

'

'

'

///

��

� 

,$

�$

�$

+=
=⋅

=⋅
=⋅
=⋅
=⋅

−

where $� (i=1,3) are the dummy part unit
vectors, and
•  equation (9) states that the z axis of a

dummy part must be orthogonal to the
curve tangent;

•  equation (10) states that the y axis of a
dummy part must be orthogonal to the
curve tangent;

•  equation (11) states that the z axis of a
dummy part must be orthogonal to the
vector normal to the plane of the
associated curve;

•  equation (12) states that the normal to
curve /�must be orthogonal to the tangent to curve //"

•  equation (13) states that the relative distance between curve / and //�must be orthogonal to the
tangent to curve //;
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•  equation (14) translates the point on curve constraint for a dummy part and its associated
curve.

Equations (9-11) must be repeated for both curve / and //.
For the 3D case we have the same equations (9,10) and (12-14), plus the additional conditions:
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where equation (15-17) are homologous to equations (9), (12), and (13), respectively, and impose
the conditions for the second tangent to the associated surface. �Equation (15) must be repeated
for both surface / and surface //.
In the previous expressions, all vector quantities are represented in the ground reference frame.
Since constraint equations can only be written in ADAMS in terms of state variables, it is necessary
to introduce two (four in the 3D case) additional massless parts, called “trackers” in the following,
associated with the parametric coordinates. The trackers are constrained to the ground by
translational joints, in order to have one single degree of freedom left, for example the
displacement in the z direction. The value assumed by this displacement at each time instant
represents the value of a parametric coordinate along a curve or surface, this way identifying the
contact point location.
Having introduced all the constraint conditions just discussed, we have that all the massless parts
are completely determined: the dummy parts are constrained to slide on the curves or surfaces so
as to be located at each time instant at minimum distance, while the tracker locations correspond
to the values of the parametric coordinates at the candidate contact points. It is now possible,
based on the solution of the minimum distance problem, to trigger the application of a contact
force, modeled  using the IMPACT module.
From the user-interface point of view, this procedure can be implemented in a very effective
manner, hiding the details of the implementation and therefore easing the model preparation and
verification. In particular, the user must only identify the pairs of curves or surfaces that will be
interested by a contact condition, and must specify the constitutive contact force law parameters. A
macro automatically generates all the dummy parts, trackers and constraint equations, without
user intervention.

�������	
��	����

In the following, we analyze some mechanical
systems characterized by the presence of unilateral
contact conditions with the purpose of validating
our procedure and showing its basic capabilities.

The Bouncing Cams Problem
This problem is concerned with the simulation of
two interacting cams, depicted in Figure 4. The
purpose here is to show that arbitrary shapes can
be easily modeled, and to give a brief description of
the user interface developed.
Body 2 is grounded, while body 1 is free. Under the
effect of gravity, body 1 falls and impacts on body
2. Although extremely simple, this problem has all
the typical features that characterize contact
conditions: unilateral constraint, time varying
contact points, stiffness of the equations.
The user defines a contact curve selecting the
option 0��	��1��	1����
�2 in the Command
Navigator, as shown in Figure 5. This will open a ��$%��	1	'	�"�	,�% !� $	!�(�	0��,��(�
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new window  that allows to input all the parameters that are required for the curve definition. Using
this window, the user specifies the body associated with the curve, a unique identifier for the curve
itself, the number of NURBS control points, the polynomial degree of the representation, a flag that
specifies whether the curve is rational or not, the control points, and the number of curve
segments.  This last information is required for the curve visualization using the ADAMS graphic
tools.
Once the curves have been generated, the user can now proceed to the definition of the unilateral
constraint. Selecting the option 0����
�1����	���	2 from the Command Navigator will open the

window shown in Figure 6. The user must now specify the following
parameters: a unique identifier for the unilateral constraint, the bodies
and the identifiers of the curves involved, the values of the parametric
coordinates that approximately solve the minimum distance problem in
the initial configuration. This value will be used as initial starting guess
by a Newton procedure that will identify the solution of the same
problem at time t=0. The
contact/impact definition is
completed by inserting the
parameters required by the
IMPACT module in the last
rows of the window.
Clicking on OK will
automatically generate all the
ingredients necessary for the
analysis: dummy parts, trackers
and UCON STATEMENTS, as
shown in Figure 7.
Selecting� 03�	���� %���2, we
obtain a check of the state of

the systems, verifying the presence of all the components
required for the simulation, as shown in Figure 8.
It is now possible to start the simulation in the usual
manner. In Figure 9 we give a sequence of images
representing the system configuration at various time
instants of the simulation. The candidate contact points at each time instant are identified by a
cross symbol. The two points on the left of the grounded body are the trackers associated with the

��$%��	2	'
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3� ��3�

��$%��	4	'	5�(0�!�	�� ������6
3� ��3�

��$%��	7	'	58���*)	(����6	3� ��3���$%��	9	'	
�(�	3��"	+���%��	0�����



8

parametric coordinates of the contacting curves. Note how their positions change during the
simulation, to account for the time varying candidate contact points.
Figure 10 gives a time history plot of some of the computed quantities. The solid line represents
the vertical position of the falling body, the dashed line represents the angular position of the same
body, while the dotted line gives the time history of the vertical component of the contact force.

��$%��	:	'	� �0�"���	�*	�"�	�)���(	�%�� $	�"�	� ��)����
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Circuit Breaker
This problem is concerned with the simulation of the closing operation of a circuit breaker. The
system is composed of several rigid components and its configuration is depicted in Figure 11. The
input energy is provided by a closing spring, that is responsible for both the quick activation time of
the mechanism and for the recharging of the opening spring. Ten unilateral contact conditions are
present in this example, that exhibits a very complex behavior with short duration impacts as well
as prolonged contacts, together with considerable interaction forces.
Figure 12 gives a few snapshots of the system configuration during the simulation. Figure 13
presents a plot of the time history of the contact forces in the various unilateral constraints. A
detailed description of the functionality of the system is beyond the scopes of the present work,
however we can notice the typical behavior that is expected in the contact/impact analysis of these
mechanisms, i.e. large interaction forces characterized by very sharp gradients that account for the
changes in system topology. Figure 14 is a zoom of the same quantities in the last part of the
simulation. Close inspection of the plot shows multiple repeated contacts followed by separation of
the bodies, or sticking conditions when the bodies remain together for prolonged periods of time.

����������

We have developed a procedure that allows the implementation in ADAMS of general unilateral
constraint conditions between curves or surfaces of arbitrary geometry. Our approach achieves
this goal through the use of user-accessible features of the code, in particular “user defined
subroutines” and “macros”. The basic ingredients of the proposed procedure are the following:
•  extremely general and flexible parameterization of the geometry of contact through the use of

NURBS;
•  rigorous implementation without any ad-hoc simplification of the constraint equations that

define the minimum distance problem;

��$%��	&&	-	�"�	!��!%��	,���<��	0��,��(�
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•  general and flexible modeling of the constitutive laws for the contact forces through
the ADAMS IMPACT module;

•  straightforward use and full integration with the program, achieved by complete hiding of the
details of the implementation to the user.

The approach offers the following advantages:
•  rigorous treatment of the kinematic problem of minimum distance, which implies greater

robustness and reliability of the simulation procedure;
•  generality and flexibility, both in the modeling of the geometry and in the description of the

interaction forces exchanged by the contacting bodies, which in turn guarantee a wide range of
applicability of the method;

•  ease of use of the procedure, with seamless integration with the rest of the code.
This way, we have extended the modeling capabilities of ADAMS to all those situations when the
presence of unilateral contact conditions plays an important role.
We have tested and validated our methodology with the help of some numerical experiments.
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