
1

������������	
��������������������������
������������������

�����������������������

���������	�

��������
������

*Chalmers University of Technology
Department of Mechanics, SE-412 96, Göteborg, Sweden

e-mail: mlidb@mec.chalmers.se, web page: http://www.mec.chalmers.se/~lidberg

� ������������

Imposing constraints on multibody systems (MBS) restricts the configuration and motion
of mechanical systems. These constraints are physically recognizable like revolute joints or
geometric in nature such as the inplane joint primitive. A number of these displacement
constraints and other constraints are available in MBS-software such as ADAMS. The user of
ADAMS also has the opportunity to program a user-defined constraint through a user-written
subroutine. This procedure requires the programming of a number of partial derivatives. Users
of ADAMS have found this to be a tedious and error prone method. By using symbolic
mathematics software we have defined a couple of kinematic constraints and automatically
generated and implemented the necessary subroutines to be used by ADAMS. In this paper we
outline the details of the procedure applied to the modeling and simulation of a rolling disk.
The procedure is simple and efficient.

� �����������
�����

The procedure is very well illustrated by the simple example of a rolling disk. Let us
assume that the disk is rolling without slip on a horizontal plane. The disk has no other

INTERNATIONAL ADAMS USERS’ CONFERENCE,
 Berlin, November 17-18 1999

2

constraints associated with it. It is free to tilt and roll in any arbitrary direction. The rolling
disk is illustrated in Figure 1.

 �
 ψ� x1

 2� θ�
 θ 2�

 ϕ�

),,(��� �

 �
 �

�� ����!������"���#�$�"%��$�%&����%$$�'�����()

The configuration of a single rigid body is defined using six generalized coordinates. Three
Cartesian coordinates),,(��� define the location and three Euler Angles),,(ϕθψ define
the orientation. ADAMS is using body-fixed Z-x1-z2 Euler angles to define the orientation of a
rigid body, see Figure 1.

The requirement of the disk rolling on the horizontal plane without slip means that the
point of contact of the disk has zero velocity. We call the angular velocity of the disk and
the vector of the point of contact relative to the center of mass of the disk

&�$

 . Then the no-

penetration, no-slip condition can be formulated as three constraint equations:

The resulting constraint equations include generalized velocities and are not integrable.
Thus this constraint is non-holonomic. There is no standard constraint in ADAMS available to
model this type of motion constraint. Instead this constraint is realized as a custom constraint
using the residues (error relative to zero) of the constraint equations as equation expressions.

)0,0,0()cos

,sincos)cos(sin

,sinsin)cos(cos(

=−

−++

−++

=×+=

θθ
ψθθψϕψ

θψθθψϕψ

��

����

����

��

���

���
&�$$&

��

3

* ����������

The standard constraint statements in ADAMS are sufficient for the definition of
commonly occurring displacement constraints between rigid bodies. For displacement
constraint not obtainable through combinations of standard constraints or for constraints
involving generalized velocity variables the user needs to implement a user defined constraint
(UCON).

For each system constraint, ADAMS/Solver formulates a governing constraint equation in
implicit, Jacobian form. In order to proceed smoothly during the simulation process a number
of partial derivatives of the constraint equation expressions are needed, see 	
��
���������������� and 	
��������������������������
����. For standard ADAMS/Solver
constraint statements, symbolic partial derivatives of the constraint equation with respect to
the system variables have been pre-computed and stored in the program for use in the system
Jacobian when the particular constraint is involved. A user-written subroutine (UCOSUB)
computes the value of the constraint expression and its derivatives for the UCON statement
during simulation.

The generalized coordinates and velocities in the constraint equations are measured at the
origin of the principal axes system with respect to the global coordinate system. The principal
axes of a part are the axes about which products of inertia are zero and therefor the inertia
matrix is diagonal with respect to this system, see 	
������������������� page 2-75. The
principal axes system in ADAMS is located at the center of mass.

Here � represents the principal axes system variables used in the expressions, � stands for
time and refers to the constraint equation expressions. � is the number of constraint
expressions and � is the number of principal axes system variables included in the constraint
expressions. These variables are either generalized coordinates or velocities. (We are
assuming that all constraint equations contain the same variables.)

Partial derivatives of equation expressions needed by ADAMS:

• The �⋅� first order partial derivatives with respect to the principal axes variables (
�

∂
∂

)

and the �⋅� second order partial derivatives with respect to principal axes variables and

time (
�

∂∂
∂
�

2

).

• The �⋅�⋅� second order partial derivatives of the constraint expressions with respect to the

principal axes variables (
��

∂∂
∂ 2

).

• The � constraint expressions ()(�).

• The � portion of the constraint expressions independent of the principal system variables
()(��).

4

• The � first and � second order partial derivatives of the constraint expressions with respect

to time (
��� ∂∂

∂
∂
∂ 2

,).

In total ADAMS requires �⋅(� + ⋅� + ��) partial derivatives. (In general the actual number
is less because not all partial derivatives are independent.)

+ ������������	������

The number of partial derivatives needed by ADAMS even for small systems with simple
constraints like the rolling disk makes it impractical to derive all expressions by hand
calculation. This statement is true even if we take into account the fact that many of these
partial derivatives are simply equal to zero. By using symbolic algebra software these
derivatives can be calculated fast and easy. Starting with the zero velocity condition in vector
form, Mathematica calculates 49 non-zero partial derivatives symbolically, see Appendix A.

Mathematica finally exports the constraint expressions and all partial derivatives to
separate textfiles, see Appendix A. Some minor manual editing is currently necessary to
format the output to the FORTRAN subroutine (ucosub.f) needed by ADAMS.

, ��������
�����
�����������������

Simulating a couple of scenarios and inspecting animations and numerical results has
validated the new constraint. One of the simulations involves a disk made of steel with radius
100 mm and thickness 3 mm. The disk starts out in the positive X-direction with the speed
100 mm/s. The disk is affected by an impact after 2 seconds of simulation. (The sole purpose
of the impact is to get interesting dynamics for visualization.) The disk looks very much like a
coin travelling across a table. The simulation proceeds smoothly without numerical
difficulties. (The numerical results have not been included in this paper but are available at the
author’s homepage together with the ADAMS model and all other related material.)

�� ����!�������"%��$�%&����%$$�'�����()

5

Even though the user defined constraints capability in ADAMS is flexible and powerful
some potential difficulties have been detected:

• Because UCONs are applied to the principal axes system of a part rather then the center of
mass marker it is not possible to obtain the reaction forces of the constraint. This might
also be a potential problem while creating the user defined constraint because in general
the orientation of the principal axes system is not known in advance.

• During the simulation process Euler angle singularities must be avoided. ADAMS
reorients the center of mass marker and the principal axes system whenever this is about to
happen. The implementation of the UCOSUB therefor needs functionality to handle the
event of reorientation of principal axes system due to Euler angle singularities. (The center
of mass marker has been rotated °90 about the X-axis in order to avoid an initial Euler
angle singularity, see Figure 2.)

-� ����
������

The broad classes of real and practical important systems must be considered and modeled
as MBS having both holonomic and non-holonomic constraints. Commercially available MBS
software, e.g. ADAMS, can not be directly used for modeling the motion of mechanical
systems with non-holonomic constraints. To solve this problem we propose a methodology
based on utilization of possibilities available from both ADAMS and Mathematica. It seems
reasonable to explore Mathematica for the symbolic generation of non-holonomic constraints
and calculation of the respective derivatives to be used by ADAMS. The efficiency of the
proposed methodology has been illustrated by the modeling and simulation of the motion of a
rolling disk without slip on a horizontal plane. We also used our methodology in teaching. It
makes it possible to demonstrate the effectiveness of interaction between ADAMS and
Mathematica for the study of dynamics of non-holonomic systems.

���������

[1] Mechanical Dynamics Inc., 	
�������������������, Ann Arbor (1998).
[2] Mechanical Dynamics Inc., 	
��������������������������
����, Ann Arbor (1998).

6

�		����.��!������"���#��	�%���"

NOTE: For readability reasons only part of the program has been included. The entire
program can be downloaded at the authors homepage, www://mec.chalmers.se/~lidberg.

� �%"���#��"/$�"�'����%'�%&�������'�"���#��%'�����'���%&����%$$�'�����(��'������
���'�������������.

���'�&%�"���%'�"����0�� ���%�&������%����%'���% ������%����'�$�12�0��!
3/�����#)� �����%��$$%4�� �%"���#��0/%����%��������#%��5

���'�&%�"���%'�"����0�� ���%���#%'���%����%'���% ������ 2�0��)

���'�&%�"���%'�%&� '���6�#�%���&�%"�����%����'�$�.71�#%%���'�����8���"��%����

���'�&%�"���%'�%&� '���6�#�%���&�%"�����%����'�$�.71�#%%���'�����8���"��%����

7

�'� $���6�$%#��8�%&������%$$�'�����(!

�'� $���6�$%#��8�%&������%$$�'�����(��'��$%��$�#%%���'����!

9�$%#��8�%&�#�'����%&�"����%&��%$$�'�����(��'��$%��$�#%%���'����!

���/$�#�"�'��%&�/%�'��%&�#%'��#����$���6��#�'����%&�"���!

���/$�#�"�'��%&�/%�'��%&�#%'��#����$���6��#�'����%&�"�����'��$%��$�#%%���'����!

9�$%#��8�%&��%$$�'�����(����/%�'��%&�#%'��#���'��$%��$�#%%���'����!

������� $��'��#%'�����'���: ���%'���: �$������6�$%#��8�%&�����/%�'��%&�#%'��#����'#�����
6�$%#��8�%&������/%�'���: �$��;��%!

�����/�����$�����6���6���%&�����#%'�����'���: ���%'��4�������/�#���%�����/��'#�/�$��0��
6�����$��!

8

��#%'��/�����$�����6���6���%&�����#%'�����'���: ���%'��4�������/�#���%�����/��'#�/�$��0��
6�����$��!

9

�		����.�<!�����2=�����'�� ��% ��'��3 #%� �)&5

NOTE: For readability reasons only part of the program has been included. The entire
program can be downloaded at the authors homepage, www://mec.chalmers.se/~lidberg.

 SUBROUTINE UCOSUB (ID, TIME, Q, PAR, NPAR,
 & IDRSEL, IFLAG, SCALAR, ARRAY,
 & XMATRX)
C
C Purpose: Disk must roll without slip at the xy-plane
C
C
C === Type and dimension statements ===================
C
C Note: For machines with 60 or more bits per word,
C substitute "REAL" for "DOUBLE PRECISION".
C
C --- External variable definitions -------------------
C
 IMPLICIT NONE
 INTEGER ID
 DOUBLE PRECISION TIME
 DOUBLE PRECISION Q(30)
 DOUBLE PRECISION PAR(*)
 INTEGER NPAR
 INTEGER IDRSEL(3)
 LOGICAL IFLAG
 DOUBLE PRECISION SCALAR
 DOUBLE PRECISION ARRAY(30)
 DOUBLE PRECISION XMATRX(30, 30)
C
C ID Identifier of calling UCON statement
C TIME Current time
C PARVAR Array of part state variables
C PAR Array of passed statement parameters
C NPAR Number of passed parameters
C IDRSEL UCON values selection control flag
C IFLAG Initialization pass flag
C SCALAR Scalar value returned to ADAMS
C ARRAY Partial derivatives
C XMATRX Second partial derivatives
C
C --- Local variable definitions ----------------------
C
 INTEGER PRTLST(8), VARLST(8), CONTYPE
 DOUBLE PRECISION R,Xdot,Ydot,Zdot,
 + psi,theta,psidot,thetadot,phidot
C
C === Executable code =================================
C
C --- Assign parameters to readable variable names ----
C
 PRTLST(1) = NINT(PAR(1))
 PRTLST(2) = NINT(PAR(1))
 PRTLST(3) = NINT(PAR(1))
 PRTLST(4) = NINT(PAR(1))

10

 PRTLST(5) = NINT(PAR(1))
 PRTLST(6) = NINT(PAR(1))
 PRTLST(7) = NINT(PAR(1))
 PRTLST(8) = NINT(PAR(1))

 VARLST(1) = NINT(PAR(2))
 VARLST(2) = NINT(PAR(3))
 VARLST(3) = NINT(PAR(4))
 VARLST(4) = NINT(PAR(5))
 VARLST(5) = NINT(PAR(6))
 VARLST(6) = NINT(PAR(7))
 VARLST(7) = NINT(PAR(8))
 VARLST(8) = NINT(PAR(9))

 R = PAR(10)

 CONTYPE = NINT(PAR(11))
C
C --- Subroutine initialization -----------------------
C
 IF (IFLAG) THEN
C
C Declare principal axes variables
C
 CALL UCOVAR(ID, 8, PRTLST, 8, VARLST)
 ENDIF
C
 Xdot = Q(1)
 Ydot = Q(2)
 Zdot = Q(3)
 psi = Q(4)
 theta = Q(5)

 psidot = Q(6)
 thetadot = Q(7)

 phidot = Q(8)
C
C --- Evaluate scalar ---------------------------------
C
 IF (IDRSEL(1) .EQ. 1) THEN
 IF (CONTYPE .EQ. 1) THEN
 SCALAR = Xdot + R*Cos(psi)*(phidot
 + + psidot*Cos(theta))
 + - R*thetadot*Sin(psi)*Sin(theta)
 ELSE IF (CONTYPE .EQ. 2) THEN
 SCALAR = Ydot + R*(phidot
 + + psidot*Cos(theta))*Sin(psi)
 + + R*thetadot*Cos(psi)*Sin(theta)
 ELSE
 SCALAR=Zdot - R*thetadot*Cos(theta)
 ENDIF
 ENDIF
C
C --- Evaluate first derivative array -----------------
C
 IF (IDRSEL(2) .EQ. 1) THEN
 IF (CONTYPE .EQ. 1) THEN
 ARRAY(1) = 1.0d0
 ARRAY(4) = -(R*((phidot + psidot*Cos(theta))*Sin(psi)
 + + thetadot*Cos(psi)*Sin(theta)))

11

 ARRAY(5) = -(R*(thetadot*Cos(theta)*Sin(psi)
 + + psidot*Cos(psi)*Sin(theta)))
 ARRAY(6) = R*Cos(psi)*Cos(theta)
 ARRAY(7) = -(R*Sin(psi)*Sin(theta))
 ARRAY(8) = R*Cos(psi)
 ELSE IF (CONTYPE .EQ. 2) THEN
 ARRAY(2) = 1.0d0
 ARRAY(4) = R*Cos(psi)*(phidot + psidot*Cos(theta))
 + - R*thetadot*Sin(psi)*Sin(theta)
 ARRAY(5) = R*(thetadot*Cos(psi)*Cos(theta)
 + - psidot*Sin(psi)*Sin(theta))
 ARRAY(6) = R*Cos(theta)*Sin(psi)
 ARRAY(7) = R*Cos(psi)*Sin(theta)
 ARRAY(8) = R*Sin(psi)
 ELSE IF (CONTYPE .EQ. 3) THEN
 ARRAY(3) = 1.0d0
 ARRAY(5) = R*thetadot*Sin(theta)
 ARRAY(7) = -(R*Cos(theta))
 ENDIF
 ENDIF
C
C --- Second partials derivatives
C
 IF (IDRSEL(3) .EQ. 0) THEN
 IF (CONTYPE .EQ. 1) THEN
 XMATRX(4,4) = -(R*Cos(psi)*(phidot + psidot*Cos(theta)))
 + + R*thetadot*Sin(psi)*Sin(theta)
 XMATRX(4,5) = -(R*thetadot*Cos(psi)*Cos(theta))
 + + psidot*R*Sin(psi)*Sin(theta)
 XMATRX(4,6) = -(R*Cos(theta)*Sin(psi))
 XMATRX(4,7) = -(R*Cos(psi)*Sin(theta))
 XMATRX(4,8) = -(R*Sin(psi))
 XMATRX(5,4) = -(R*thetadot*Cos(psi)*Cos(theta))
 + + psidot*R*Sin(psi)*Sin(theta)
 XMATRX(5,5) = -(psidot*R*Cos(psi)*Cos(theta))
 + + R*thetadot*Sin(psi)*Sin(theta)
 XMATRX(5,6) = -(R*Cos(psi)*Sin(theta))
 XMATRX(5,7) = -(R*Cos(theta)*Sin(psi))
 XMATRX(6,4) = -(R*Cos(theta)*Sin(psi))
 XMATRX(6,5) = -(R*Cos(psi)*Sin(theta))
 XMATRX(7,4) = -(R*Cos(psi)*Sin(theta))
 XMATRX(7,5) = -(R*Cos(theta)*Sin(psi))
 XMATRX(8,4) = -(R*Sin(psi))
 ELSE IF (CONTYPE .EQ. 2) THEN
 XMATRX(4,4) = -(R*((phidot + psidot*Cos(theta))*Sin(psi)
 + + thetadot*Cos(psi)*Sin(theta)))
 XMATRX(4,5) = -(R*(thetadot*Cos(theta)*Sin(psi)
 + + psidot*Cos(psi)*Sin(theta)))
 XMATRX(4,6) = R*Cos(psi)*Cos(theta)
 XMATRX(4,7) = -(R*Sin(psi)*Sin(theta))
 XMATRX(4,8) = R*Cos(psi)

