

Modelling of gun dynamics to improve weapon system accuracy FLEXIBILITY				
Example of a first frequency and mode shape validation for an artillery system				
		L.	L	
		F F	×	
Extraction of modal properties including damping of each sub-structures in order to rebuild the equivalent ADAMS model				

Modelling of gun dynamics to improve weapon system accuracy			
TRACKS AND SUSPENSIONS			
Solution required $F_c(\omega) = H_1 \gamma_c(\omega) + H_2 \gamma_s(\omega)$ from time expression of Fc, γ c, γ s			
Simultaneous identification of (H_1, H_2) using an ARMAt process :			
$\sum_{i=0}^{p} a_{i} F_{c}(t-i) = \sum_{j=0}^{q} b_{j} \gamma_{c}(t-j) + \sum_{k=0}^{r} c_{k} \gamma_{s}(t-k)$			
So, after a z sample transformation of the finite difference equation :			
$H_1(z) = rac{b_j z_j}{a_j z_j} \mathrm{et} H_2(z) = rac{c_k z_k}{a_j z_j} .$			
Using a sample/continuous translation $H(s) = \frac{\prod_{i=1}^{m} (s + z_i)}{\prod_{j=1}^{n} (s + p_j)}$			
and a Cauchy form algorithm, we find the Linear State Equation expression			
$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$ and state matrix are automatically introduced using the LSE/IMPORT			
GIAT <i>industries</i> 15 ^e ADAMS European User's conference-November 2000	DGA		

