
Elliott, Co-Simulation with ADAMS, 11/00 1

A Highly Efficient, General-Purpose Approach
 for Co-Simulation with ADAMS®

Andrew S. Elliott, Ph.D.
Mechanical Dynamics, Inc.
6530 East Virginia Street

Mesa, Arizona, USA 85215-0736
480.985.1557 aelli@adams.com

ABSTRACT

This paper presents a computationally efficient, general-purpose methodology for connecting
any external computer code to ADAMS, in such a way that the two programs can communicate
during system simulation and so that both programs can run at close to their best stand-alone
speed. The method allows for the external code to run in discrete time if so designed, and it may
have multiple and/or variable sampling rates. Two examples of problems that might take ad-
vantage of this methodology are aeroservoelastic response, where the aerodynamic loads are
computed in a finite difference CFD code, and interactive simulation modification such as hard-
ware-in-the-loop, where the user needs to change simulation inputs while the problem is run-
ning. The method uses a quadratic interpolation/extrapolation routine which is presented in
FORTRAN, but which is easy to implement in any programming language.

INTRODUCTION

In advanced applications of ADAMS’ mechanical system simulation technology, it often occurs
that a user already has a sizeable investment in another computer code that solves part of the
problem, for example to compute hydraulic, electromagnetic or aerodynamic loads. This may be
a commercially available program or a specially developed, highly proprietary in-house product.
This other code will generally have a solution methodology very different from ADAMS’, and
may be running on different hardware or at a different site. For these reasons, it is usually not
possible to convert the other code to run as an ADAMS/Solver subroutine, nor to convert
ADAMS/Solver to run as a subroutine of the other code.

In these cases, we need to be able to connect the other code to ADAMS/Solver in such a way
that the two programs can communicate with each other during the system simulation to get a
fully coupled response. Further, because this kind of problem tends to be large and complex,
the connection needs to be made in an efficient manner which will allow both programs to run at
the best possible speed, unless there are no constraints on time and hardware availability.

Externally –
Computed
Loads

ADAMS/Solver
Mechanical
System

Fully –
Coupled
Solution

Elliott, Co-Simulation with ADAMS, 11/00 2

CO-SIMULATION CONSIDERATIONS

When setting up a co-simulation solution, it is important to consider these points:

1. ADAMS/Solver is solves the system equations in continuous time and produces a continu-
ous result. This is true even though we may choose to request output from Solver only in
fixed time increments. Further, the solution methodology in ADAMS/Solver is arranged in
such a way that internal simulation time may actually go backwards when the corrector is
having trouble converging.

2. The other code you want to connect to Solver will often solve its part of the problem in dis-
crete time and the result is not available between time steps. This can be true if the other
code is using a discrete approximation to continuous time, e.g. a finite difference approach,
or it the other code is actually modeling a discrete process, such as a digitally-controlled
actuator.

3. The other code may be much slower, or much faster than ADAMS/Solver, depending on the
relative complexities of the portions of the problems they are each solving, and depending
on the computer hardware they are using. If possible, we would like to ensure that during
the co-simulation each code can run at close to its best possible speed, and that the com-
munications between the codes are not the limiting speed factor.

AN EXAMPLE PROBLEM – WHAT CAN GO WRONG

Using a very simple demonstration problem, we can show many of the things that can go wrong
with a poorly arranged co-simulation. We will later use this same problem to show how we can
greatly improve the results.

The model includes a pair of identical spring-mass-
damper elements with the following characteristics:

K = 314.16 lbf/in (= 121391 lbm-in/sec2/in)
C = 0.0005 lbf-sec/in
M = 0.3183 lbm

This is specifically set up to give a very stiff, nearly
undamped system, whose natural frequency is close
to 100 Hz (actually about 98.3 Hz).

One spring-mass-damper is forced by a regular
ADAMS SFORCE element, using low frequency,
purely sinusoidal forcing with a magnitude of 50 lbf
and a period of 1 second.

The other spring-mass-damper will be forced by an
external, discrete time code which approximates the
same force. We can easily control the time step in this
other code.

All simulations will run for 4 seconds.

Elliott, Co-Simulation with ADAMS, 11/00 3

There are a variety of things that can go wrong with a co-simulation problem. The most common
problem is that there will be a communications bottleneck between the codes and the combined
solution will just run very slowly. This kind of slowdown can also be caused by difficulties that
one code has in “digesting” the data provided by the other code.

Certain kinds of problems, however, can lead to the co-simulation producing wrong answers.
These problems include

• synchronization failure between the two codes
• aliasing due to inappropriate sampling interval
• numerical “pinging” in ADAMS caused by discrete inputs
• artificial instability caused by incompatible error control

Now let’s look at what happens to this simple system when we co-simulate it with various times
steps for ADAMS/Solver and for the other code.

ADAMS/Solver – 25 output steps/sec (step size = .040)
External Force - 50 compute steps/sec (step size = .020)

Since the forcing frequency is only 1 Hz, we would expect these values to be more than suffi-
cient to give very good results. The following plot compares the displacements of the mass with
true continuous forcing to the that with co-simulated discrete forcing.

Decreasing the Solver step size to .02 or even .01 seconds has very little effect on the co-
simulated response except for increasing the run time 10 or 20%. However, going to a .005
second or smaller step size for Solver allows the discrete forcing to numerically excite the 100
Hz mechanical system as shown in the following plot.

Elliott, Co-Simulation with ADAMS, 11/00 4

ADAMS/Solver – 200 output steps/sec (step size = .005)
External Force - 50 compute steps/sec (step size = .020)

So this is apparently not a route to the desired solution. Instead, we can try to decrease the
time step for the external forcing code to see if that improves the system response.

ADAMS/Solver – 50 output steps/sec (step size = .020)
External Force - 500 compute steps/sec (step size = .002)

Elliott, Co-Simulation with ADAMS, 11/00 5

This would seem like a promising approach, but the response seems to be degrading as the
simulation continues. If we look at the velocity traces, we see that a purely artificial instability
has been introduced into the system at the unexpected frequency of about 1.6 Hz.

As a last resort, we could try increasing the sampling rate in the forcing code even more.

ADAMS/Solver – 50 output steps/sec (step size = .020)
External Force - 1000 compute steps/sec (step size = .001)

Elliott, Co-Simulation with ADAMS, 11/00 6

This is even worse! Not only is the discretely-forced side unstable and responding at a strange
1.4 Hz frequency, the numerics have gotten so bad that this response has coupled into the sup-
posedly good side of the model and is sending it unstable also!

So here we have an apparently simple co-simulation problem, using externally computed dis-
crete forcing, where we can not even get close to the true solution! Increasing the number of
simulation steps on the Solver side can artificially excite undesired system harmonics, and in-
creasing the number of steps on the forcing side can send the response unstable.

THE SOLUTION – A LITTLE “GLUE”

There is fortunately a fairly straightforward solution to the problem. This is to add an interpola-
tor/extrapolator interface between ADAMS/Solver and the other code.

First, we must recognize that all digital computer solutions to these kinds of problems are actu-
ally discretely computed approximations to the continuous physics. (Let’s not consider the area
of digital controls for now.) The differences between the various kinds of solution tools we have
is mainly in the order of the functions that are used to approximate the true solution between the
discrete points where it is computed.

While a finite difference code (and our demonstrator discrete forcer) may make no attempt at all
to interpolate between solution points, ADAMS/Solver uses polynomials of varying orders in its
predictor/corrector solution to both help the integrator advance and interpolate the response
between solution points. We can use this same approach for co-simulation.

The other code wants to takes its own preferred time steps, usually much smaller than Solver,
and wants to be able to sample the ADAMS response at each of those steps. And since Solver
uses mainly variable time step integrators, it is neither reasonable nor efficient to try to force it to
use the same small time step as the other code. And as we have shown previously, even if we
could do this, it would not entirely fix the co-simulation problem. What we really need is a con-
tinuous approximation to the ADAMS results that the other code could sample whenever it
wants – an interpolator.

Also, ADAMS/Solver wants to be able to interrogate the other code for its response at any spe-
cific time, not only at some fixed interval, and not even always stepping forward in time. The
other code typically has only discrete outputs, so it can only respond with those. We might try to
make the other code take such tiny steps that it was very close to continuous, but again we
have seen earlier that this will not entirely fix the co-simulation problem.

Further, as Solver advances, the predictor needs to guess at the response at future times, but
the other code can not provide those. So what we need here is a way to extend the response
of the other code into the future – an extrapolator.

So the solution to our problem is to create a small, highly-efficient “glue” routine which connects
the two codes during a co-simulation, and can do two-way interpolation & extrapolation on the
data thatpasses between the codes. This actually works extremely well and is described in the
following section.

Elliott, Co-Simulation with ADAMS, 11/00 7

A 2-WAY INTERPOLATING/EXTRAPOLATING INTERFACE

The required functionality from our “glue” routine is shown in the following diagram.

This is typically implemented with the following logic:

1. ADAMS/Solver updates its side of the interface with mechanical response data at each
successful integration step.

2. The other code gets an interpolated response from the interface at whatever sampling
interval it wants to use.

3. The other code advances until it is within one time step of the Solver simulation time,
updating its side of the interface with force data at each step.

4. A/Solver extracts continuous extrapolated forces from interface to advance.
Because the other code never quite catches up to Solver, this is sometimes called a “half-step
lead” method.

Note that if the other code is actually simulating a true discrete process, you should not use the
extrapolator part of the interface. This is shown in the “bypass” in the above diagram. Similarly,
if the other code’s response is not dependent on any ADAMS system states, but only on time,
there is no need to use the interpolator part.

The interpolator and extrapolator both use quadratic functions. Using quadratics avoids the
“spline buckling” problem that can occur with higher order polynomial, but still gives a much
better approximation that simple linear functions. However, the quadratic functions require
three data points, so they are more expensive to compute than linear functions and require
three steps to get started. It is important, therefore, to do a careful implementation of the inter-
polator/extrapolator to get the best possible response from the interface.

ADAMS/Solver

Other Code

Interface

Elliott, Co-Simulation with ADAMS, 11/00 8

A single-variate implementation in FORTRAN of such an interface is shown here, based on an
analytical solution for the quadratic coefficients and using a rotating stack to minimize memory
operations. This can be translated into any desired language, and also can be used as the basis
for a multi-variate implementation.

SUBROUTINE INTRP2 (yvals, tvals, reqtim, value)
DOUBLE PRECISION yvals(3), tvals(3), reqtim, value
DOUBLE PRECISION a,b,c,denom,y1d23,y2d31,y3d12,d31,d23

C assumption is that y = a*t^2 + b*t + c
d31 = tvals(3)-tvals(1)
d23 = tvals(2)-tvals(3)
denom = d31*(tvals(1)*tvals(3) + tvals(2)*(d23-tvals(1)))
y1d23 = yvals(1)*d23
y2d31 = yvals(2)*d31
y3d12 = yvals(3)*(tvals(1)-tvals(2))
a = (y1d23 + y2d31 + y3d12) / denom
b = ((tvals(2)+tvals(3))*y1d23 +
1 (tvals(3)+tvals(1))*y2d31 +
2 (tvals(1)+tvals(2))*y3d12) / -denom
c = ((tvals(2)*tvals(3)*y1d23) +
1 (tvals(1)*tvals(3)*y2d31) +
2 (tvals(2)*tvals(1)*y3d12)) / denom

C output
value = a*reqtim**2+b*reqtim+c
return
end

USING TIMGET

Synchronization between the two programs depends on knowing where each is in the simula-
tion sequence. The ADAMS/Solver utility subroutine TIMGET always returns the time corre-
sponding to the last successful simulation step, and Solver will never backup past this time. By
monitoring the result from TIMGET inside a user-written subroutine (SFOSUB, VFOSUB, etc.),
we can identify when a successful simulation step has just been made.

This introduces a small complication. Monitoring the result of TIMGET tells us only when the
previous step was successful. This means that at each entry to the subroutine, we need to al-
ways save all the states that have to be passed to the forcing code, so that when we see the
change in the TIMGET result, we can send over the set of states from the previous time the
subroutine was called. This is outlined below.

Required Solver-side Functionality

1. Check TIMGET to see if previous step was successful.
(If no, jump to #3.)

2. Link to interface. Update interpolation arrays from saved states array.
3. Update saved states array with current states.
4. Link to interface. Get extrapolated forces.
5. Return forces to model.

Elliott, Co-Simulation with ADAMS, 11/00 9

INTER-PROCESS COMMUNICATION

Of course, in order to get the co-simulation to work properly, it is required that the two codes
and the “glue” routine can talk to each other. There are various ways to get that to happen, de-
pending on the operating system and hardware in use for each code, as well as on whether or
not you have access to the internal workings of the other code. On the Solver side, the com-
munication will be most often done through standard user-written subroutines for SFORCE,
VFORCE, GFORCE, VARIABLE or DIFF elements.

The most efficient inter-process communication is via a direct subroutine interface. That is, the
interpolation/extraction interface and the other code are set up so that they can be called by
ADAMS/Solver. In this case, data can be transferred using shared memory, such as Fortran
COMMON blocks. On the Windows/NT platform especially, as long as each code has some
method of access to system services, this can also be done using dynamic link libraries (DLL’s)

Another method for inter-process communication is with pipes. Pipes are provided by both the
Unix and NT operating systems and are functionally equivalent to shared memory stacks, but
are accessed as files. Process blocking and synchronization tools are provided as part of the
pipe services. Pipes require that all the involved processes be running on the same system, or
on similar systems within an NT workgroup. The example which is presented here uses pipes
as the communication method.

Finally, if the involved processes are running on dissimilar systems or even in different loca-
tions, inter-process communication can be implemented using network sockets. This is another
standard system service provided by both NT and Unix operating systems. Sockets can run on
any compatible hardware over any network using the TCP/IP protocols. They are implemented
very similarly to pipes and also provide process blocking and synchronization tools. A tutorial
on using sockets for inter-process communication with ADAMS can be found at
http://www.members.home.net/a.s.elliott/IPC/IPC_intro.html

RESULTS

This is one of those few times where you can have it faster, cheaper and better!

1. The interpolated co-simulation always runs faster than the non-interpolated one. Here are
run-time results for the 4-second example simulation using 50 steps/sec in Solver and 1000
Hz sampling in the forcing code, on a 400 MHz NT machine:

Non-interpolated - 7.91 seconds
Interpolated - 0.73 seconds!

2. It is not necessary to do extensive modifications to the ADAMS model or to the other code.
Most of the work is done in the interpolation/extrapolation interface. Depending on your
choice for interprocess communication methodology, you can even continue to run your two
codes on separate boxes with different operating systems.

3. The interpolated co-simulation converges nicely to the continuous solution as the computa-
tional step size (or sampling interval) is decreased in the other code. This is shown in the
following plot, where the curve for sampling at .001 seconds is directly below the true con-
tinuous solution.

Elliott, Co-Simulation with ADAMS, 11/00 10

4. The interpolated results are much better than the non-interpolated results, not only in the
displacements, but also in the first and second time derivatives. This is shown in the fol-
lowing two plots, where the non-interpolated co-simulations results are referred to as “ZOH”,
or zero-order hold. In both plots, the interpolated results are so close to the continuous so-
lution as to be indistinguishable.

Elliott, Co-Simulation with ADAMS, 11/00 11

SUMMARY

1. Co-simulation is a widely useful technique for joining any type of existing external computa-
tions with an ADAMS model.

2. Good implementation of a co-simulation interface can be tricky. A poor implementation can
be very slow and even give incorrect results.

3. Using a two-way quadratic interpolation/extrapolation scheme in the interface can greatly
improve both co-simulation fidelity and speed.

4. Such an interface can also be used across platforms and across operating systems.
5. The presentation, example models and example code are available on CD or for download

on the Internet. Contact the author at aelli@adams.com.

1

A Highly Efficient, General-
Purpose Approach for Co-

Simulation with ADAMS

Dr. Andrew Elliott
Technical Specialist

N.A.Professional Services

What is Co-simulation? Why use it?

■ “Co-simulation” - Connecting some external process
to ADAMS/Solver so that it and A/Solver can
communicate to each other during the simulation.

■ Example Uses
➨ Make use of existing external code for computing forces
◆ Use other external software to control an ADAMS model
◆ Execute hardware-in-the-loop coupled simulations
➨ Do interactive simulation modification

2

Most Important “Considerations”

■ ADAMS works in continuous time (and sometimes
goes backwards).

■ External code may be in discrete time (sampled) and
may have multiple or variable sample rates.

■ External code may be much slower or much faster
than ADAMS/Solver.

■ External code may run on separate hardware.
■ Communications should allow for maximum possible

efficiency for both programs.

Co-Simulation Combinations

■ ADAMS/Solver - always continuous time solution
■ Other Code

◆ Continuous response - continuous time solution
• Example:

◆ Continuous response - discrete time solution
• Example: Lift computed by finite difference CFD code

◆ Discrete response - discrete time solution
• Example: Digital controller

◆ Combinations (controls + actuators)

),(xtCL L αα=

3

What can go wrong?

■ Excessive run times
■ Communications bottlenecks
■ Synchronization failure
■ Numerical “pinging”
■ Incompatible error control
■ Aliasing
■ Artificial instability
■ Wrong answers!

Co-Simulation Problems

■ Continuous force on one
mass. Discrete forces, via
co-simulation, on other. 1 Hz
Forcing on a mechanical
system with Ω==100 Hz .

■ Examine effects of increased
resolution in either code.

4

Continuous Force - SFO1

! adams_view_name='SFO1'
SFORCE/1, TRANSLATIONAL, I=4, J=2,
, FUNCTION=50*SIN(2*PI*TIME)

Discrete Force - SFO2B

! adams_view_name='SFO2B'
SFORCE/4, TRANSLATIONAL, I=6, J=7,
, FUNCTION=USER(0)

Discrete Forces - SFO2B

■ ADAMS/Solver - SFOSUB
■ “Glue” program - IN_EX, with interpolation

disabled
■ “Other” code - MS Excel, with DLL

5

Simulation Sequence

Attempt Steps in 4 sec Sampling Interval

1 100 .02

2 200 .02

3 200 .002

4 200 .001

A Solution - Interpolation / Extrapolation

■ Create a small, highly-efficient “glue” routine which
can do two-way interpolation & extrapolation on the
data passed between the codes.

■ Typical use for discretely-computed external forces:
1. A/Solver updates interface with response data at each successful

integration step.
2. External code pulls interpolated response from interface at own

sampling interval.
3. External code updates interface with force data at each time step.
4. A/Solver extracts continuous extrapolated forces from interface.

■ Sometimes called “half-step lead” method.

6

Interface Function

Quadratic
Response

Interpolator

Quadratic
Force/Control
Extrapolator

Continuous
Response

Sampled
Response

Current
Force/Control

Predicted
Force/Control

True
Digital
Bypass

Interface Functionality

ADAMS/Solver
Compute

Interpolator

Sample

Extrapolator

External Code
Compute

7

Quadratic Interpolation / Extrapolation

■ Better approximation than simple linear, but requires
3 data points.

■ Avoids “spline buckling” problem with cubics (esp.
with uneven data intervals)

■ Easy to implement, fast compute time.
■ Assume
■ Analytical solution for A, B, C. (MathCAD)
■ Use a rotating stack - no data ordering.

CBtAty ++= 2

Single-Variable FORTRAN Implementation
SUBROUTINE INTRP2 (yvals, tvals, reqtim, value)
DOUBLE PRECISION yvals(3), tvals(3), reqtim, value
DOUBLE PRECISION a,b,c,denom,y1d23,y2d31,y3d12,d31,d23

C assumption is that y = a*t^2 + b*t + c
d31 = tvals(3)-tvals(1)
d23 = tvals(2)-tvals(3)
denom = d31*(tvals(1)*tvals(3) + tvals(2)*(d23-tvals(1)))
y1d23 = yvals(1)*d23
y2d31 = yvals(2)*d31
y3d12 = yvals(3)*(tvals(1)-tvals(2))
a = (y1d23 + y2d31 + y3d12) / denom
b = ((tvals(2)+tvals(3))*y1d23 +

1 (tvals(3)+tvals(1))*y2d31 +
2 (tvals(1)+tvals(2))*y3d12) / -denom
c = ((tvals(2)*tvals(3)*y1d23) +

1 (tvals(1)*tvals(3)*y2d31) +
2 (tvals(2)*tvals(1)*y3d12)) / denom

C output
value = a*reqtim**2+b*reqtim+c
return
end

8

Using TIMGET for Synchronization
■ GETSTM returns current simulation time when called.

Can change forward and backward. Not very helpful.
■ REQSUB is called only at each output step. Often

too coarse for co-simulation.
■ SENSUB is called after each successful integration

step and can be/has been used for controlling
interface communications.

■ TIMGET always returns the time corresponding to the
last successful simulation step. Easier and simpler.
Solver will not backup past this time. Everything gets
done in the xFOSUB or VARSUB.

Update and Save Timing

Successful Step?Yes YesYes No No NoNo

Save Step?Yes YesYes Yes Yes YesYes

Update Arrays?No NoNo Yes No YesNo

TIMGET Changes?No NoNo Yes No Yes

9

Inside xFOSUB or VARSUB

■ Requires static storage for state
interpolation array,
[NSTATES+1, 3]

■ Requires static storage for force
extrapolation array
[NFORCES+1, 3]

■ Requires static storage for
synchronization and other time
data.

■ Requires static storage for
temporary states save array
[NSTATES+1, 1]

■ Required Functionality:
◆ Previous step successful?
◆ Update interpolation arrays

from saved states
◆ Update saved states
◆ Interpolate states to next

sample time
◆ Link to other code; wait.
◆ Update extrapolation arrays.
◆ Extrapolate forces
◆ Return forces to model

NO

Review - No Interp, 200 steps, .001 sampling

10

Simulation Sequence

Attempt Steps in 4 sec Sampling Interval

1 100 .02

2 200 .02

3 200 .002

4 200 .001

With Interpolation, 200, .001

11

Inter-Process Communications
■ Direct Subroutine Interface

◆ Other code called by Solver, or Solver called by other code
◆ Data passed or contained in COMMON blocks (FORTRAN)
◆ Easiest to implement. Can be done with DLLs.

■ Pipes *
◆ Equivalent to shared memory; accessed as files.
◆ Process blocking and synchronization fairly easy.
◆ Requires single system or like systems

■ Network
◆ Very similar to pipes, but OK for dissimilar systems, using sockets
◆ See http://www.members.home.net/a.s.elliott/IPC/IPC_intro.html

Summary
■ Co-simulation is a very useful technique for joining

existing external computations with ADAMS.
■ Implementation can be tricky and slow.
■ A quadratic interpolation/extrapolation interface and

greatly improve co-simulation fidelity and speed.
■ Such an interface can also be used across platforms

and across operating systems.
■ Presentation and example code available on CD or

for download.
■ Contact for author: aelli@adams.com

