Igo Besselink

Applications of SWIFT-Tyre: the next step in tyre modeling

TNO Automotive

TNO Automotive: applications of SWIFT-Tyre

November 2001

Contents

- **Relation between MDI and TNO Automotive**
- New developments for ADAMS 12.0
- The SWIFT-Tyre model
- Estimating SWIFT-Tyre parameters
- Applications of SWIFT-Tyre:
 - durability study
 - cornering uneven roads
 - aircraft landing gear shimmy

Relation MDI - TNO Automotive

Starting with ADAMS 12.0:

• TNO Automotive will be responsible for the development of all ADAMS/Handling Tire models

Agreement covers the tyre models:

- Fiala, 521-Tire, UA-Tire, Pacejka '89 and '94
- ADAMS/Aircraft Tire
- MF-Tyre, MF-MCTyre and SWIFT-Tyre

Activities: development, enhancements, solving bugs, second line support, documentation, training...

New in ADAMS 12.0...

MF-MCTyre: Magic Formula model for motorcycles:

- valid for very large camber angles (up to 45-60 degrees)
- already in use for a number of years by three leading motorcycle manufacturers
- also suited for vehicle roll-over (!)

MF-Dataset Libraries:

• libraries with Magic Formula coefficients for car, motorcycle and light truck tyres

SWIFT-Tyre...

The SWIFT-Tyre model

SWIFT development

we have three main problem aspects:

 belt dynamics involving natural frequencies of ca. 30, 50, 70 Hz and higher

path

- road unevennesses: cleats
- short wavelength wheel oscillations

while retaining Magic Formula for steady state

Model lay-out

TNO Automotive: applications of SWIFT-Tyre

Data requirements

A SWIFT tyre property file contains information on:

- Magic Formula
- loaded radius and effective rolling radius
- contact length, enveloping properties
- relaxation lengths
- inertia of the rigid ring and residual mass
- stiffness and damping of the tyre

How to obtain this data?

Model validation

Many experiments:

• drum:

-yaw oscillation -dynamic braking -loaded radius -high speed cleat testing -

• flat plank machine: -contact length -enveloping properties -effective rolling radius

-...

Important question...

Full measurement programme to determine all SWIFT parameters will be extensive and time consuming

"Do we really have to do all this testing?"

Possible approaches:

- limited test programme, depending on application
- use existing test data and/or model results (FEM) provided by the tyre manufacturer
- estimate coefficients based on previous tests, past experience

Estimating parameters (1)

• Longitudinal stiffness distribution

Experimental results for a number of different tyres indicate:

A:B:C = 3:6:1

Estimating parameters (2)

• Contact length

Based on geometrical considerations, literature, experience

Reducing overhead

Maximise commonality between MF-Tyre and SWIFT-Tyre

Examples:

- MF-Tyre (ADAMS 12.0) will use the SWIFT loaded radius formula
- SWIFT-Tyre uses same Magic Formula as MF-Tyre
- rigid ring dynamics can be switched off

Also:

• tyre property files can be used across different simulation environments (e.g. MATLAB/Simulink)

Some applications of SWIFT-Tyre...

- durability study
- cornering uneven roads
- aircraft landing gear shimmy

Durability study

Full vehicle model, driving over uneven road at 90 km/h

Comparison of vertical axle acceleration:

- vehicle measurements
- full SWIFT-Tyre model
- SWIFT-Tyre without effective inputs

• vertical axle acceleration

TNO Automotive: applications of SWIFT-Tyre

Cornering uneven roads

- quarter car model
- forward velocity: 72 km/h (20 m/s)
- road profile: base 1.0 m, height 0.015 m
- fixed steering angle, range: 0-15 degrees
- result: average lateral force

• "effective" tyre characteristics

Aircraft landing gear shimmy

simple, but representative landing gear model

Shimmy model

Simulation conditions:

- forward velocity 270 km/h (75 m/s)
- shimmy initiated by asymmetrical spin-up

Advantages of SWIFT-Tyre over "classical" models: (e.g. Von Schlippe, Smiley, etc.)

- non-linear, includes combined slip
- relaxation length decreases as function of side slip
- gyroscopic behaviour of the tyre belt included

Steady state characteristics (1)

• Magic Formula fit aircraft tyre: lateral force

Steady state characteristics (2)

• Magic Formula fit aircraft tyre: self-aligning moment

Simulation results

• unstable shimmy vibration: 15 Hz

Force

Conclusions

TNO Automotive provides:

- state-of-the-art tyre modelling
- (tailor made) tyre testing
- processing of measurements, determination of tyre parameters (e.g. MF-Tool)
- tyre datasets from a library

SWIFT-Tyre is a versatile tyre model, which can be used for many applications!

Questions?

www.delft-tyre.com

TNO Automotive Schoemakerstraat 97 P.O. Box 6033 2600 JA Delft The Netherlands

