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The complex construction of planet wheels in cycloidal planetary gear (Cyclo) practically
makes impossible its optimal design.  In planetary gear (Cyclo), toothing of planet wheels has
shape of equidistant of shortened epicycloid.
Till now, there are applied nominal toothing of wheels in which only one equidistant occurs
identical for planet wheel and co-operating wheel. In the paper it is presented original
modification of inside cycloidal meshing based on diversification of equidistant of planet
wheel toward co-operating wheel.
Two methods and comparisons between analytical and ADAMS model are presented.

Fig.1: Cycloidal Planetary Gear (CYCLO)
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Currently, in heavy industry, high speed engines are used for many types of machines that
requires application high ratio mechanical gears.  Relatively, the smallest mechanical gear is
the cycloidal planetary gear known as cyclo gear (CPG).
Cycloidal gear implements inside, out of centre meshing to obtain high ratios at one stage,
high coefficient of teeth in contact and low dissipation of energy resulting from occurring
only roller friction in the gear and coaxiality of shafts [2,3,4].

Figure 2 shows the kinematics scheme.  The cyclo gear consist of planetary gear Fig.2 and
straight-line mechanism Fig.2b in series connection. Because of that kind of connection we
get compact gear with stationary central gear (2), which is meshing with one or two planet
wheels (1, 1’) driven by the eccentric yoke (3), Fig. 2c. In case of immovable stationary wheel
(2), a kinematics ratio is given as follows:
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where:
z1=zs is a number of teeth of planet wheel 1 or 1’,
z2=zk is a number of teeth (rolls) of stationary gear 2.

When a high ratio is required within the limits of i=11:87 - a difference ∆z = 1.
Outline of planet wheel is an equidistant of shortened epicycloid abbreviation ESE [1,2,3].
Central gear 2 consists of set of rolls. Torque from the planet wheels is transmitted  by the
bolts and disk of straight-line mechanism 4 Fig.2.
The main element of the cyclo gear connecting others elements is the planet wheel 1. For
balancing body forces and lowering of meshing forces two identical planet wheels 1, 1' are
applied, with reverse angle between them equal π. Planet wheel ( 1 or 1' ) is a flat disk which
perimeter has a shape of equidistant of shortened epicycloid.  In the centre of the wheel there
is a big round hole for high effort roller bearing of eccentric and round about it  smaller holes
for bolts of straight-line mechanism.

Fig 2. Kinematics scheme of planetary cycloidal gear
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Inside toothing is realised by two planet wheels and immovable central wheel, Fig.2.
Planet wheel or wheels have inside teeth and curvilinear shape of equidistant of shortened
epicycloid in abbreviation ESE [2].  Till now it is applied unmodified inside cycloidal
meshing which is based on occurring one and the only one ideal ESE as well for planet wheel
as for cooperating wheel.  That kind of meshing can be called 	���	
� and its characteristic
feature is absence or casual configuration of clearances between teeth being the reason of
discontinuity or even stopping of revolving movement.

Parameters of equidistant:

• Module pitch of epicycloid                                  
�
�

� =                                               (2)

• coefficients of shortening of epicycloid              
�

��
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where
e – eccentric of gear
a – radius of constant wheel of epicycloid (Fig.2 – 1 (ra))
b – radius of rolling wheel (Fig.2 – 2 (rb))
r = a + b  – sum of radius ‘a’ and ‘b’

In this paper is shown differences between models of CYKLO with nominal and modificated
equidistant’s parameters applied as numerical method in higher level approximates
calculation model to conditions in real gear. To visualize differences there is also the
analytical method as well as numerical one presented and obtained results has been compared
with each other.
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Basic idea of modification of inside cycloidal meshing is diversifying the equidistant of planet
and co-operating wheel. It will occur two different equidistant, Fig.4:
Nominal equidistant SQT characterised by known parameters r, e, q, m representing
stationary co-operating wheel (set of rolls)
Corrected equidistant S1Q1T1 with unknown parameters  rk, ek, qk, mk

Corrected equidistant will cause clearances between teeth {∆ri} and pitch play δ. When
equidistants are co-linear then initial configuration of clearances between teeth occur {∆roi}
enabling assembling of the elements of the gear, Fig.3 and 4. After revolution of planet wheel
with angle δ modified equidistant will be tangent to nominal in point S and clearances
between teeth would create other asymmetric configuration  {∆ri} with infinitely low
clearances in active part of toothing and higher clearances in idle part of toothing, Fig.3.
A measurement of distribution of loads in active part of toothing can be factor of contact (or
pseudo-contact) designating sets of clearances lower than assumed criteria value ∆r:
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where:
α2, α1 - generating angles of nominal ESE, in extreme points 1 and 2 at the contact arc;
α2p, α1p - angles of position of extreme points of contact arc 1 and 2, Fig. 4;
αpc - angular pitch of toothing in gear.
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Fig. 3. The inside cycloidal meshing in planetary gear with configuration of clearances
between teeth modified planet wheel for ε = εmax = 0,45 (90 % teeth in active contact)

Fig. 4. Distances of equidistant {∆ri} and contact arc | α2p – α1p | after revolution of planet
wheel with angle δ > 0
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The goal of modification is modelling of clearances (distances) between teeth by means of
correction of equidistant. For known parameters of nominal equidistant r, e, q, m in gear with
ratio i = zs = zk-1 it is searched corrected equidistant fulfilling  criteria of optimisation :

• sufficiently high factor of contact ε,
• criterial values of clearance between teeth ∆r, ∆ro,
• sufficiently low angle of pitch play δ < δmin,
• equal values of equidistant eccentrics e = ek.

After introduction stationary and movable co-ordinate system, Fig. 4:

• co-ordinates of nominal equidistant in stationary co-ordinate system Oxy
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• co-ordinates of corrected equidistant in movable co-ordinate system Oxoyo
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• co-ordinates of corrected equidistant in stationary co-ordinate system Oxy

)sin()q,r,(y)cos()q,r,(x),q,r,(x kkokokkkokokkkokk δ⋅α−δ⋅α=δα               (9)
)cos()q,r,(y)sin()q,r,(x),q,r,(y kkokokkkokokkkokk δ⋅α+δ⋅α=δα           (10)

where:
r, e, q, m, zs, zk – known parameters of nominal equidistant [2],
rk, qk, mk - sought parameters of corrected equidistant,
α, αok, δ, ek=e – sought additional parameters, connected with modification, Fig.4
m, mk - coefficients of shortening of epicycloid.

Modification of meshing requires searching of values of 9 variables:
parameters of corrected equidistant rk, qk, mk

angle of revolution δ, (compensating pitch play),
additional parameters, describing position angles α1, α2, αok1, αok2 of extreme points 1, 1’, 2,
2’ on contact arc and position angles  αs, αoks of tangent point S, Fig.4
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Configuration of clearances can be determined from set of distances of two points positioned
on the equidistant and normal line to nominal equidistant, Fig.4. Unknown parameters of
corrected equidistant and additional parameters of modification resulting from optimisation
criteria can be calculated from the following set of equations:

0)(x
)(’y

1
)(y),q,r,(x

)(’y

1
),q,r,(y 1

1
1kk1okk

1
kk1okk =








α⋅

α
+α−δα⋅

α
+δα                (11)

0)(x
)(’y

1
)(y),q,r,(x

)(’y

1
),q,r,(y 2

2
2kk2okk

2
kk2okk =








α⋅

α
+α−δα⋅

α
+δα               (12)

[ ] [ ]{ } r ),q,r,(y)(y),q,r,(x)(x 5,02
kk1okk1

2
kk1okk1 ∆=δα−α+δα−α                             (13)

[ ] [ ]{ } r ),q,r,(y)(y),q,r,(x)(x 5,02
kk2okk2

2
kk2okk2 ∆=δα−α+δα−α                               (14)

 ),q,r,(x)(x kkoksks δα=α                                                                                            (15)

 ),q,r,(y)(y kkoksks δα=α                                                                                            (16)

),q,r,(x

),q,r,(y

)(x

)(y

kkoksk

kkoksk

s

s

δα
δα

=
α
α

                                                                       (17)

δ=
α
α

−
α
α

)q,r,(x

)q,r,(y
tg

)(x

)(y
tg

kkoksok

kkoksok

s

s arcarc                                        (18)

[ ] [ ] 5,02
kkoksk

2
kkoksk

5,02
s

2
s  ),q,r,(y),q,r,(x )(y)(x δα+δα=α+α                        (19)

k
k

k
2

2

r
m

ze
)qq(

m11

1m1 =










 ⋅
+−⋅

−−

−+
                                                                      (20)

ε=
α

α−α

pc

12                                                                                                          (21)

Equations (11), (12) are for normal lines transiting through points 1, 1’ and 2, 2’. Equation
(13), (14) represent distances of equidistants between these points. Equation (15)-(19)
describe conditions of tangency of equidistants in  basic system Oxy. Equation (20) results
from including corrected equidistant in nominal one and (21) connects sought angles α1, α2

with coefficient of contact ε.
System of equation (11) : (21) is solved by iterative method of Levenberg-Marguardt which is
a variation of gradient method in MathCAD 6.0 software.  Precision of calculation (error
vector) was set on level 10-13.   As the result of solving system of equations for assumed value
εj we can get 9 sought values, which can be components of vector of meshing modification:
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For m-criterial values of vector of contact ratio:
ε = [0,24; 0,27; 0,30; 0,33; 0,36; 0,39; 0,42; 0,45] ,

we get matrix of modifications (matrix of possible solutions):
� = [$1(ε1), $2(ε2),......., $m(εm)]                                                  (23)

Exemplary matrix A for cycloidal gear with ratio ���s=19 is shown in Table 1.
Elements of matrix has been calculated for the following nominal equidistant:
r = 96mm; e = 3mm, q = 8,5mm; zk = zs+1 = 20; m = 0,625; αpc = 18,947368°
and criteria of optimisation:     ∆r = 0,01m;       max∆rio = 0,03mm;       δmin = 0,05°

Table 1:

Matrix of optimal solutions for cycloidal gear with ratio | i  | = 19:
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Dependence between torques in CPG is [ 2,6,7 ] :

η⋅⋅== iMM2M hc1                                                             (24)
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where:

M1 = 2Mc – torque, arising in planet wheels 1 i 1’,
M2 – torque giving load on interacting central wheel 2,
Mh – input torque (driving) on eccentric shaft (yoke shaft),
i, η - kinematics ratio and efficiency of gear; η≅1,
R –eccentric reaction force,
αR – incline angle of force R,
e – eccentric of gear, e = OaOb.
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Torque Mc arises in planet wheel as a consequence of loading the gear of drive torque Mh and
can be calculated from that wheels assuming that load is distributed equally on both wheels.
Relation (27) results from balance of moments in planetary gear with positive base  ratio i0>0
acc. to [ 7 ]) and CPG is that kind of gear.  So yoke’s shaft is differential shaft and central
wheel’s shaft is aggregating shaft.
Torques acting on planet wheel produces in CPG three unknown load distributions, as
follows:
load distribution in meshing ,distribution of forces Pi between teeth,
load distribution (Qj),acting on bolts of straight-line mechanism
load distribution of eccentric R on Qri loading roller elements (rolls) in bearing hole.

Fig.5 System of forces, strains and moments and rule of balancing forces acting on planet
wheel

Figure 5 shows how to balance the forces acting on the planet wheel 1 or 1’. Forces between
teeth Pi and forces Qj are function of displacements δi and δj which arise in points of
application of forces. And forces Qri  depending on resolving of force R are the function of
geometrical features of roller bearing and mainly depend on radial clearance. [3].
To calculate forces between teeth Pi and reaction forces Qj there is applied analytical method,
making use of simplifying assumptions [ 5,6,7 ].
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• Following assumptions in analytical method has been done, Fig.5 :
• loads are distributed equally on both planet wheels and each transmits torque Mc  being

half value of output moment M1

• load is transmitted only by one (active) side of planet wheel and directions of meshing
force action make pencil of lines with common starting point in roller point of meshing
Os, ;
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• displacements δi in place of acting of meshing forces Pi result from slight angular
displacement β of planet wheel  as rigid plate coming from  shifts of rolls of stationary
wheel and local mutual strain of rolls and teeth;

• load from planet wheel is transmitted onto one (active) side of straight line mechanism
and directions of action of forces Qj are parallel towards line OaOb (of eccentric) ;

• displacements δi in point of action of forces Qj result from slight angular displacement ∆φ
of straight line mechanism’s disk and are created by deflection of bolts and mutual strains
of bolts and holes of planet wheel ;

• eccentric reaction force R is a concentrated force and is distributed into components Qri

and results from the value of input torque Mh and conditions of equilibrium.
• Method of calculation of meshing forces Pi and bolts reaction forces Qj analytically is

described in references [ 5, 6 ].
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In ADAMS has been created model of cycloidal planetary gear (Cyclo) with planet wheel and
cooperating elements (bolts and rolls).  The geometry of interacting elements is simple
(circles with different radius) and it is no problem to create the geometrical model of them.
The more complicated is the shape of external edge of the planet wheel.
It is described by parametric equations of equidistant [ 2, 6 ] :

)cos(q)zcos(ecosrx kees γ+α⋅−α⋅⋅+α⋅=                                                 (27)

)sin(q)zsin(esinry kees γ+α⋅−α⋅⋅+α⋅=
where:

α – generating angle of equidistant,
r, e, q, �k – parameters of meshing, Fig.2;
γ – overtaking angle, depending on coefficient of shortening equidistant m and gear ratio.

In the ADAMS model of Cyclo, was implemented two different kind of equidistant – with
nominal and corrected parameters – as profile of teeth of planetary wheel.  The profile of teeth
was implemented as generation of the curve points (equidistant) on the basis of parametric
equations (5,6) with given tolerance every 0,050 with parameters of nominal equidistant:
  r = 96,0mm; e = 3mm, q = 8,5mm; m = 0,625; zk = zs+1 = 20,  ; αpc = 18,947368°
and corrected equidistant  : given in Table 1 for  ε=0.27,  0.39 and  0.45

Values of forces in both of methods has been calculated for given size of cycloidal gear as in
Fig.5 with  ratio i = 19,  power N = 6.4[kW] and rotational speed nh = 750 [rpm].
For this gear M1 = 2Mc = 880 [Nm], and force R = 10,3 [kN].

Results from analytical calculation was precise presented in [2,3].
The max values of  Pi=1711 [N] and Qi = 3776 [N]
In numerical method, the calculated forces are in max level about for Pi=2200[N], and
Qi=3800[N]  (Fig.7). (this is only an example for modificated equidistant with parameters
where ε=0.27 (Table 1))
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Fig.6.  Model of Cycloidal Planetary Gear (CYCLO)  built in ADAMS

Fig.7. An examples of nonfiltered traces of meshing forces between planetary wheel and
stationary wheel and reactions between bolts and planetary wheel.  ( ε = 0.27 )
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Presented results concern cycloidal gear with nominal and modificated meshing with
transmission ratio i=19.   It should be also executed calculations of entire range of applied
ratios i=11:89 and basing on them to try to generalise distribution of forces of meshing
forces Pi and reaction forces Qj

The basic aspect of modification of meshing in cycloidal planetary gear is diversification of
equidistant.
Matrix of modification A (Table 1) presents example field of solutions of inside cycloidal
meshing for assumed criteria of optimisation.  Matrix A enables visualisation of clearances
{∆ri} assigned to individual teeth that enables and makes easier selection of efficient
parameters of correction of planet wheels.
Calculated parameters of corrected equidistant rk, ek, qk, mk can be used while producing
toothing that will assure co-operation from 50 : 90% of teeth of planet wheel in its active part
of meshing.
Distribution of meshing forces Pi and reaction forces Qj calculated in ADAMS have a little
different traces comparing it with distributions determined analytically. It results from
omitting in analytical method inertion of moving parts of gear.
This model was modeled in ADAMS as a rigid body, so to get more details about behavior of
this kind of gear,  it should be also modeled as a flexible bodies.
To make this results more authentic, also was built a real model of CYCLO gear which is
actuall in testing stage and this work will be continue and develop.
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