Structurally sound is the way to go. (Sport (Sport Utility Vehicle Chassis)

Grant Atkinson Atkinson Design Professions Inc

Advantages of Interfacing With Complimentary Engineering Packages to Achieve a Complete and Robust Robust Design.

ADAMS Simulation

- •Virtual Prototyping software
- •Allows vehicle performance to be evaluated before building a physical prototype
- •Models are built using high fidelity component models (tires, bushings, non-linear springs, bump stops, shocks, etc.)

Front Suspension Simulation

•Front suspension simulates full jounce and full rebound

•Geometry data is exported to Datum Point File

•Datum Point File is imported in Pro/E to create Front Axle point data geometry

Typical Example of a 4 Link Front Suspension

GEOMETRY	Point #	LEFT (mm)			RIGHT (mm)		
		X	Y	Z	X	Y	Z
Lower Link to body	1-2	950.00	-308.00	-235.00	(mirror)		
Lower Link to axle	31-32	0.00	-500.00	-280.00	(mirror)		
Jpper Link to body	5-6	560.00	-308.00	-40.00	(mirror)		
Jpper Link to Axle	35-36	0.00	-308.00	-48.80	(mirror)		
Vheel Center	9	0.00	-876.00	-169.00	(mirror)		
Hub Compliance at Axle	9h	0.00	-776.00	-169.00	(mirror)		
ire Patch	10	0.00	-876.00	-593.18	(mirror)		
all Joint Center	11	0.00	-730.00	-169.00	(mirror)		
BJ	19	3.00	-711.10	-43.40	(mirror)		
tab. Bar to Axle	61-62	100.00	-550.00	-110.00	(mirror)		
tab. Bar to Link	63-64	100.00	-550.00	-190.00	(mirror)		
tab. Link to Frame	65-66	550.00	-320.00	-200.00	(mirror)		
ie Rod L_R Spindle	12	-196.00	-749.00	-123.50	(mirror)		

DAFOMPOI	COORDINAT	E SYSTEM = C	NS KEFEKEN(SO
DIMENSIC	ONS RELATIVE	E TO COORDIN	ATE SYSTEM
X	Y _Y	ZZ	NAME
d505=950.00	d506=-250.00	d507=235500	F ₁
$d508_{\overline{8}} = 0.00_{0}$	d509 <u>-</u> -500.00	d510=280.000	F311
d511=560.000	d512=308800	d513=40.00	F55
d514 = 0.00	d515=-308800	d516=-48.80	F355
d547 = 0.00	d518=-876.000	d5195=170.000	F99

Rear Suspension Simulation

•Rear suspension simulates full jounce and full rebound

•Geometry data is exported to Datum Point File

•Datum Point File is imported in Pro/E to create Rear Axle point data geometry

Typical Example of a 4 Link Rear Suspension

GEOMETRY	LEFT (mm	1)		RIGHT (mm)		
	Х	Y	Z	Х	Y	Z
Lower Link to body 1-2	600.00	-400.00	-210.00			
Lower Link @ Body Orientation 3-4						
Lower Link to axle 31-32	80.00	-470.00	-250.00			
Lower Link @ axle Orient 33-34						
Upper Link to body 5-6	560.00	-308.00	-30.00			
Upper Link @ Body Orientation 7-8						
Upper Link to Axle 35-36	80.00	-308.00	-30.00			
Upper Link @ Axle Orientation 37-38						
Wheel Center 9	0.00	-876.00	-169.00			
Tire Patch 10						
Wheel Alignment Point 11	0.00	-800.00	-169.00			
Stab. Bar to Axle 61-62	100.00	-550.00	-110.00			
Stab. Bar to Link 63-64	100.00	-550.00	-190.00			
Stab. Link to Frame 65-66	550.00	-320.00	-200.00			
Tie Rod L_R Spindle 12	-196.00	-749.00	-123.50			
Drag Link 14	-240.00	630.00	-129.00	-283.30	-307.20	-112.60

DATUM POINT ARRAY WITH DIMENSIONSREFERENCE COORDINATE SYSTEM = CS0

DIMENSIONS RELATIVE TO COORDINATE SYSTEM

 Xx
 Yy
 Zz
 NAME:

 d874=2867;790
 d875=479;190
 d876=235;000
 R1

 d877=3850;000
 d878=500;000
 d879=280;000
 R31

 d880=3290;000
 d881=293;000
 d882=10;000
 R55

 d883=3850;000
 d884=308;000
 d885=2,220;000
 R355

 d886=3850;000
 d887=876;000
 d888=170;000
 R9;

Front and Rear Suspension Points Files Are Imported From Adams Geometry Data

- This is the only file containing original geometry from ADAMS
- Front geometry is independent from rear geometry
- Datum curves are control by chassis layout
- Geometry can be updated by just re-reading new data from ADAMS

Chassis Controlled by Independent Layout to Define the Envelope Around ADAMS Geometry (Front and Rear Point Data)

- Beam cross-sections of front, middle and rear
- Length of front and rear drop sections
- Length of front and rear splice sections
- Height above front axle from front ACSO
- Height above rear axle from front ACSO
- Overall width of chassis

Front Axle Use Copy Geometry From Skeleton With ACSO As Default Position

- Sub-assemblies and parts are placed using copy geometry from ADAMS original data in skeleton
- Front shocks placed by datum curves connecting 2 points (skeleton). Shocks will follow geometry from ADAMS

Rear Axle Use Copy Geometry From Skeleton With ACSO As Default Position

- Sub-assemblies and parts are placed using copy geometry from ADAMS original data in skeleton
- Rear sway BAR is developed thru a group of points (skeleton). Rear sway bar will follow geometry from ADAMS

Structurally Analyzing Chassis by Using Datum Points and Also Collapsing to Mid-planes for Sub-assemblies

- Pro/program is created in top assembly and flows down to parts by the execute command
- "Mesh" parameter drives the suspension of all holes and all hardware
- Weldments also use this parameter to collapse the parts to mid-planes for successful meshing

Creating an Input Statement "Mesh Yes/no"

- Datum points are created to show bolting positions
- Bolt holes are placed using datum points
- "Mesh" parameter is added to the bolt holes and also added to all associated hardware (bolts, washers and nuts)

Pro/program Can Be a Powerful Ally When Interfacing With a FEA Solver

- When "mesh=yes" all the holes in all the parts will be suppressed and only the point geometry will be visible
- Now this assembly can be meshed and analyzed using any solver in this case we used Ansys

Weldments Using Pro/program

- Right front splice Weldment is shown with gaps for correct weld penetration
- Datum points and bolt holes are shown when "mesh=no"
- Datum curves drive the three internal splice parts

Weldments Using Pro/program

- Right front splice Weldment shown splice parts collapsing to the mid-plane
- Datum points and bolt holes are not shown when "mesh=yes"
- Datum curves drive the three internal splice parts

Chassis Assembly

- "Mesh==no"
- All holes and bolts are shown
- Splice sub-assembly Weldment sections are shown with appropriate weld penetration gaps

Chassis Assembly

- "Mesh=yes"
- All holes and bolts are not shown
- Splice sub-assembly Weldment sections are shown with splice parts collapsing to mid-planes for a complete mesh

Chassis Assembly

- Pro/mesh used to create mesh
- Beams elements are used for all bolted connections
- Practically any solver can be used now to analyze the structural integrity of this subassembly (Ansys was used in this case)

Summation

- ADAMS software controls all suspension geometry
- Using 2 separate point files (front axle and rear axle)
- Geometry can be re-read at any point in time using a common ACSO
- Layout controls basic envelope of chassis also from a common ACSO