Jacek GRAJNERT* Zbigniew CHABRAŚ* Piotr WOLKO*

Airspring Modeled in MATLAB/Simulink as a Force Element in ADAMS

* Wrocław University of Technology

Examples of Pneumatic Suspended Vehicles

Elementary Pneumatic Suspension

Energy Flow in Elementary Airspring

Railway Car on a Curve and Airsprings Deformations

Matrix of Variation Coefficients of Effective Surfaces of 3-D Airspring

 $\overline{\mathbf{P}} = \overline{\mathbf{S}} \cdot (p - p_a)$ $\overline{\mathbf{S}} = \overline{\mathbf{S}}^{\mathbf{O}} + \mathbf{C} \cdot \overline{\mathbf{X}}$

		\mathbf{x}^{D}	$\lambda_{\rm D}$	\mathbf{z}^{D}	η^{D}	$\phi^{\rm D}$	Ψ^{D}	\mathbf{x}^{G}	У ^G	\mathbf{z}^{G}	$\eta^{\scriptscriptstyle G}$	$\phi^{\rm G}$	Ψ^{G}	
	F_x^{D}	c _x				c,		-c _x				-e ₁		
	$F_{y}{}^{\text{D}}$		c _x		-c ₀				-c _x		\mathbf{e}_1			
	$F_z^{\ D}$			c _z						-c _z				
	$M_{\eta}{}^{D}$		-c,		\mathbf{c}_{ϕ}				\mathbf{c}_1		-c ₂			
	$M_{\phi}{}^{D}$	c,				\mathbf{c}_{ϕ}		-c ₁				-c ₂		
_	$M_{\psi_{_{D}}}$						c_{ψ}						$-e_{\psi}$	
_	$F_x^{\ G}$	-c _x				-e ₁		c _x				c _o		
	$F_{y}{}^{G}$		-c _x		\mathbf{c}_1				\mathbf{c}_{x}		-c ₀			
	$F_z^{\ G}$			-c _z						c_z				
	$M_{\eta}{}^{\rm G}$		e ₁		-c ₂				-c ₀		\mathbf{e}_{ϕ}			
	$M_{\phi}{}^{\rm G}$	-e ₁				-e ₂		e,				$\mathbf{e}_{\mathbf{\phi}}$		
	$M_{\psi_{_{G}}}$						$-c_{\psi}$						\mathbf{e}_{ψ}	

Laboratory Tests

Airspring FEM Model in ABAQUS*

* calculated by Wroclaw Centre of Networking and Supercomputing

Example of Load Cases

• inflation (0.0÷0.5 MPa),

• axial deflection (35÷105mm),

• rotational deflection (-5°÷5°)

• lateral deflection (-120÷120mm)

Airspring Characteristics Calculated by FEM

Reaction Force F_x^{D} at lower mounting point

Reaction Moment M_{ϕ}^{G} at upper mounting point

Reaction Moment M_{ϕ}^{D} at lower mounting point

Reaction Force F_x^D at Lower Mounting Point

Reaction Moment M_{ϕ}^{G} at Upper Mounting Point

Reaction Moment M_{ϕ}^{D} at Lower Mounting Point

x-Coefficients

$$c_0^f = \frac{k_0^f}{p_1 - p_a}$$

Library of Components of Pneumatic Suspension System

Airsprings - Linear and Nonlinear

Block Parameters: Airspring 3-D linear 🛛 🗶		Block Parameters: Airspring 3-D nonlinear	×
Airspring 3-D - linear (mask)	(3-D)	Airspring 3-D - nonlinear (mask)	
In 1: Fz0, dz, dx, dy, dfiz, dfix, dfiy, Gz, Gs Out : Fz, Fx, Fy, Mz, Mx, My		In 1: Fz0, dz, dx, dy, dfiz, dfix, dfiy, Gz, Gs Out : Fz, Fx, Fy, Mz, Mx, My	
Parameters		Parameters	
Airspring type User Defined		Airspring type User Defined	•
Additional airspring volume [m3]		Additional airsp Phoenix 140_103	
0.005		0.005 Phoenix IAU_113 Phoenix IAU_113	
Reservoir volume [m3]		Reservoir volu	
0.14		0.14 Continental 684IN4. TUU	
Capillary diameter [m]		Orfrice diamete User Defined	
0.015		0.011	
Gamma coefficient [s/m]		Flow resistance coefficient [-]	
0.01		1	
Outside temperature [K]		Outside temperature [K]	
293		293	
Outside pressure [Pa]		Outside pressure [Pa]	
100000		10000	
Specific heat at constant pressure [J/kgK]		Specific heat at constant pressure [J/kgK]	
			_
Specific heat at constant volume [J/kgK]		Specific heat at constant volume [J/kgK]	_
	(3-D)	Last transfer and Calent - singular Det W 1	
Apply Revert Help Close	\square	Heat transfer coefficient - airspring [W/K]	
		Hast transfer excitiziont reconneir Du (W. 1	
		<u>.</u>	

Apply

Revert

Help

Close

Example - Model of the Railway Car

MATLAB/Simulink Part of the Railway Car Model

Structure of the "adams_sub" Block

Simplified Railway Car Model

Vertical displacement "yR" for M_0.01 s (A), A-M_0.01 s (B) and A-M_0.001 s (C)

Pressure in Elastic Chambers

Air Mass Flow from Feeding System

Conclusions

- Simpler building of vehicle models with advanced pneumatic suspension system
- Easy choice of the suspension system parameters
- Usability of linearized models
- Evaluation possibility of pressures, air mass flow and temperatures in each point of the suspension system
- Opennes for new models

Future Plans

- More detailed tests on airsprings to obtain full 3-D characteristics
- Collecting and eventual completion of the equalising and leveling valves charcteristics
- Broadening the pneumatics library with other components e.g. position sensors

	Block Parameters: User Derined
	Airspring type parameters - User Defined (mask)
Block Parameters: User Defined 🛛 🛛 🛛	Out : V0, S0, Cv, Cl, Cm, kfiz
Leveling valve type parameters - User Defined (mask) Out : P1, P2, P3, P4, P5 Parameters	Parameters Initial airspring volume [m3] 0.07
Parameter 1	Effective area [m2] 0.2
Parameter 2	Variation coeff. for effective surface - vertical [m] 0.0
Parameter 3	Antiper and a second seco
Parameter 4	Variation coeff. for effective surface - angular [m3/rad] [0.2
Parameter 5	Torsional stiffness - kfiz [Nm/rad] [57295
Apply Revert Help Close	Apply Revert Help Close

Bibliography

- [1] Grajnert J. : Podstawy teoretyczno-doświadczalne projektowania zawieszeń pneumatycznych. Oficyna Wydawnicza PWr, Wrocław 1996.
- [2] Grajnert J. : Improvement in Airspring Modelling. 4th ADAMS/Rail Users' Conference. Utrecht 1999.
- [3] Grajnert J., Krettek O.: Zur Phänomenologie und Ersatzmodellbildung von Luftfedern. ZEV+DET Glas. Ann. 115 (1991), Nr. 7/8.
- [4] Grajnert J., Wolko P.: Library of Components of Pneumatic Suspension System modeled in MATLAB/SIMULINK and Possibilities of its Application in ADAMS/Rail. 5th ADAMS/Rail Users' Conference. Haarlem 2000.
- [5] Marcinkowski J.: Podstawy określania charakterystyk sprężyn powietrznych. Prace Naukowe IKEM PWr, Nr 68, Seria: Monografie Nr 19, Wrocław 1992
- [6] Oda N., Nishioka K., Nishimura S.: Theoretical analysis of the diaphragm air springs for railroad vehicles. 40th General Meeting of Japan Soc. Mech. Eng., 1963

Summary

This paper is a continuation of a previous one "Library of Components of Pneumatic Suspension System Modelled in MATLAB/SIMULINK and Possibilities of its Application in ADAMS/Rail". It shows how to build a model of pneumatic suspension system using specialised library in MATLAB/Simulink and include such a model into structure of a vehicle model using Plant Export function in ADAMS/Controls. ADAMS and MATLAB work in a loop and exchange such parameters as velocities, displacements, forces and moments in each airspring. Such approach allows building complex models of pneumatic suspension system where connections between airsprings, feeding system and control system are taken into account. It is especially useful by studying untypical cases of suspension system and when you need to follow specified parameters not available in present version of airspring model.