

Recent Advances in ADAMS/Solver

Rajiv Rampalli Director, Core Analysis Tools Product Development

ADAMS/Solver

Expanded domain for virtual prototyping

- Controls
- Vibration
- Durability
- New Applications (Driveline, Aircraft...)
- Solver Requirements
 - Expanded modeling capabilities
 - More robust solutions
 - Improved accuracy
 - Faster simulation performance

The ADAMS Strategy

Simpler equations preferred to fewer but more complex set

Mechanical Dynamics

Numerical Methods Improvements

ADAMS v10

Gstiff

Enhanced correctorModified correctorSI2 formulation

ADAMS v11

Constant BDF

Enhanced correctorModified correctorSI2 formulation

ADAMS v12

Integrators

- •Enhanced corrector
- Modified corrector
- SI2 formulation
- •SI1 formulation

•RKF 4-5

ADAMS/Solver

Enhanced GSTIFF Integrator

- Improved corrector
 - Optimize convergence criteria
 - Corrector convergence test is changed
 - Old Tolerance: $\mathcal{E}/1000$
 - New Tolerance: $\varepsilon/2 \cdot Neq \cdot (Order + 2)$
 - Relative Error Calculations changed
 - Old: Error = Δ / MAX (1, State)
 - New: Error = Δ / MAX (1, Max_State_so_far)
- Real-world benefits
 - Vehicle Dynamics
 - Average speed improvement of ~30%
 - No significant change in results
 - Durability
 - Accurate accelerations (reduction in spikes)

Modified Corrector

- Improved corrector
 - Optimize convergence criteria
 - Corrector monitors errors only on:
 - displacements
 - user defined dynamic states
 - Corrector does not monitor error on:
 - Velocities
 - Lagrange Multipliers
 - Forces
- Real-world benefits
 - Contact
 - 200% faster
 - Fewer corrector convergence failures
 - Friction

Mechanica Dvnamics Durability

Mechanical

Dynamics

Index 3 Formulation

0

$$\dot{p} - \frac{\partial L}{\partial q} + \Phi_q^T \lambda - \sum_{k=1}^{na} F_k \cdot \frac{\partial r_k}{\partial q} =$$

$$p - \frac{\partial L}{\partial u} = 0$$

$$u - \dot{q} = 0$$

$$\Phi(q, t) = 0$$

- L = Lagrangian = T V $\Phi = Constraint Equations$ r = Application point of force
- p = Momenta u = Velocity q = Displacement $\lambda = Lagrange Multiplier$ F = Externally appplied force

Mechanical

Dynamics

SI2 Formulation

= ()

$$\dot{p} - \frac{\partial L}{\partial q} + \Phi_q^T \lambda - \sum_{k=1}^{na} F_k \cdot \frac{\partial r_k}{\partial q} = 0$$
$$p - \frac{\partial L}{\partial u} = 0$$
$$u - \dot{q} + \Phi_q^T \mu = 0$$
$$\Phi(q, t) = 0$$
$$\Phi(q, u, t) = 0$$

L = Lagrangian = T - V $\Phi = Constraint Equations$ r = Application point of force p = Momenta u = Velocity q = Displacement $\lambda = Lagrange Multiplier$ F = Externally appplied force u = Lagrange Multiplier

0

$$\dot{p} - \frac{\partial L}{\partial q} + \Phi_q^T \dot{\varsigma} - \sum_{k=1}^{na} F_k \cdot \frac{\partial r_k}{\partial q} =$$

$$p - \frac{\partial L}{\partial u} = 0$$

$$u - \dot{q} + \Phi_q^T \dot{\kappa} = 0$$

$$\Phi(q, t) = 0$$

$$\Phi(q, u, t) = 0$$
Mechanical
Dynamics

Mechan

L = Lagrangian = T - V Φ = Constraint Equations *r* = *Application point of force* p = Momentau = Velocityq = DisplacementF = Externally applied force

Index 3 - SI2 - SI1 Formulations

	Index-3	SI2	SI1
Accuracy	Q: High V, A: Conditional	Q, V, A: High	Q, V, A, λ : High
Robustness	Medium	High	High
Tolerance	High	Medium	Low
Speed	High	Medium	Medium
Track high frequencies	Low-Medium	High	Best

ADAMS

Constant_BDF

A new fixed-step, stiff integrator
User must specify HMAX
Primarily constant step size
Corrector ensures solution satisfies EOM
Step size controls error
Integrator runs at KMAX(6) to minimize truncation error

14

Dynamics

Contact Modeling Improvements

ADAMS v10

2D Contact •Point

•Line

•Curve

Friction

ADAMS v11 3D Contact

Sphere
Cylinder
Box
Solid

ADAMS v12

PerformanceRobustnessSpeedContact Function

Mechanical Dynamics

Contact Modeling

Normal Force Models (Impact or Impulse)

- Simple Friction Model (No Stiction)
- Special Integrator Handling
 - Contact Sensing
 - Step-size and order control
- Extra ContactOutput Steps

Mechanical

Flex Body Improvements

ADAMS v10

User defined damping
Improved NASTRAN Support
Portable MNF's
Invariant control

ADAMS v11

Modal Force LoadsImproved Abaqus InterfacePreloaded Bodies

ADAMS v12

- Modal damping
- •Large MNF (> 2GB)
- Modal State Access
- •C++ Solver Support
- Mforce contour plots

ADAMS/Solver

A/Flex Improvements Release 12.0

- Control damping ratio using an expression
- Large MNF file support (> 2GB)
- Modal State access from user subroutines
- Flex Bodies in C++ Solver
- Contour plots for MFORCE in PPT

Enhanced GSE Release 12.0

Support for:

Mechanical

Dynamics 2 1

- Continuous systems
- Discrete systems
- Combined (Sampled) systems

New user subroutine interface

- Subroutine interface similar to Matlab/RTW
- RTW interface available with ADAMS/Controls

 $\dot{x}_{c} = f_{c}(x_{c}, u, t), \qquad x_{c}(t_{o}) = x_{co}$ $x_{d+1} = f_{d}(x_{d}, u, t), \qquad x_{d}(t_{o}) = x_{do}$ $y = g(x_{c}, x_{d}, u, t)$

ADAMS/Durability Support Release 12.0

Enhanced FEMDATA statement

- von Mises stress and strain
- Loads & Nodal Deformation
 - ABAQUS
 - ANSYS
 - NASTRAN
- Modal deformation
 - NASTRAN
 - ANSYS

The C++ Solver Release 12.0

ADAMS/Solver

Next generation ADAMS Solver

- Object oriented structure
- Compact and efficient
- Facilitates encapsulation of data and methods
- Set of modeling elements is user extensible
- Reduced development time and maintenance costs
- Commercially available for 4 years
 - Solver for embedded products (CAD)
 - Larger user base than FullSim!
- Well-defined Interface (API)
 - Embeddable in client programs
 - ◆ CAD, Vertical products, User "main" programs

Mechanical Dynamics

Mechanical

The C++ Solver Release 12.0

Optionally available to users since version 10 User subroutine support (FORTRAN, C, C++) I/O file support All modeling elements except Forces: NFORCE, MFORCE, FRICTION POINT_MASS Bodies: Integrators: ABAM, SI1, CONSTANT_BDF Other: SENSOR Most simulation commands supported

The C++ Solver Release 12.0

Why should I use the C++ Solver?

By exercising the new Solver and communicating your experience you can help MDI provide you a better solver

Benefits of the C++ Solver

Superior Modeling

- API for Class Library User extensibility
- Superior implementation for Flexible Bodies
- 2D Part
- Generalized ACTIVATE/DEACTIVATE
- User defined constraints
- Accuracy and Robustness
 - Analytical differentiation of expressions & user subroutines

Release 13.0 Product migration to C++ based Solver • Full support for adm, acf, user subroutines Default solver for selected ADAMS Vehicle **Dynamics and Chassis events** Continued improvements to the C++ Solver Speed Compatibility Improved Contact modeling, performance and post-processing

Questions?

