
INTRODUCTION TO THE ADAMS C++ SOLVER

G. Óttarsson

Mechanical Dynamics, Inc.
2300 Traverwood Drive

Ann Arbor, Michigan 48105-2195
gisli@adams.com

1 Introduction

The ADAMS Solver is a powerful numerical analysis program that auto-
matically solves the equations governing kinematic, static, quasi-static, and
dynamic system simulations. The ADAMS Solver is the solution kernel for
all ADAMS products which facilitates building, testing, and refining vir-
tual prototypes of mechanical systems. The current Solver has a structured
modular design and is largely composed of FORTRAN subroutines. Over
the past thirty years, additional functionality has raised the complexity of
the program such that its data structures and top down design are imped-
ing further development and maintenance. MDI’s response to this problem
was to begin development of the next generation ADAMS Solver founded on
the object-oriented programming paradigm. In general, the object-oriented
program decomposes a solution algorithm into subgroups of related parts,
called classes, that take into account both the code and the data related to
each group. In addition to controlling access to the data, classes have the
enormous benefit of encapsulating complex implementation details behind a
usable class interface. This enables developers of other related functionality
to leverage the class while being spared the intellectual challenge of compre-
hending these details. The classes are then organized into a class hierarchy
which further facilitates the addition of new objects and functionality.

The first part of this paper will formally introduce the next generation
ADAMS Solver, explain the motivation for its development, and describe the
benefits of its use. The second part of the paper, will describe advancements
in solution technology and other features unique to the new Solver. Sub-
sequently, compatibility issues between the new and legacy solvers, as well
as what the user can expect from the new Solver, will be discussed. Lastly,
quality assurance and deployment plans for the new Solver will be presented.

1

http://www.adams.com
mailto:gisli@euler.adams.com

2 The Next Generation ADAMS Solver

In the late 1990s Mechanical Dynamics, Inc. (MDI) committed to developing
the next generation ADAMS Solver, otherwise known as the ADAMS C++
Solver. The C++ Solver is a compact and complete object-oriented class
library for the computer simulation and analysis of dynamics systems. It is
designed to be the solution kernel for all ADAMS products. Within the next
development cycle, the C++ Solver will support all the current modeling
elements, statements, and commands, while offering novel functionality not
available in the current Solver. Through its well defined Application Pro-
gramming Interface (API), the C++ Solver is accessible as a stand alone
ADAMS Solver, as an integrated solver in ADAMS/View, or as an embed-
ded solver in a larger client applications. Note that this latter configuration
allows users to link their own programs against the library and make calls to
the API to build, simulate, and analyze a dynamic system.

Some readers will be curious about the choice of C++ over other OOP
languages. Other languages were considered and rejected. Among these were
FORTRAN 90, SmallTalk and Java. The C++ programming language was
the language which combined best support for object-oriented programming,
performance, and compatibility with C and FORTRAN. Familiarity among
developers and the benefit of international standardization also played a role.

With its object-oriented programming paradigm and streamline class hi-
erarchy, the C++ Solver promises to reduce both development time and
maintenance costs. Furthermore, the API enables larger CAD/CAE applica-
tions to embed ADAMS Solver technology, making system level simulation
more widely available. Clearly, users will benefit from the initiative. Shorter
development cycles and improved maintenance, puts higher quality, feature
rich applications in the hands of analyst sooner. Increased availability of
ADAMS products through embedding, promises that users can remain in
their favorite CAE environment, while accessing state-of-art system simula-
tion tools.

3 Enhancements in Solver Technology

The C++ Solver features numerous enhancements compared to the FOR-
TRAN Solver directly or indirectly related to the choice of programming
language and its object-oriented architecture.

2

3.1 Software modularity

Although the choice of programming languages has no practical importance
to the end users of software, it is difficult to justify MDI’s decision to rewrite
the ADAMS Solver in a modern programming language without outlining
some of the direct benefits of this decision. These benefits are extremely well
illustrated by a case study of the comparative effort of adding support for
flexible bodies to the FORTRAN Solver on one hand, and C++ Solver on
the other.

One of the principal advantages of the Object Oriented Programming
paradigm is the ability to encapsulate, or hide, implementation details of
one software module from another. This desirable quality is not one of the
strengths of the FORTRAN Solver because the FORTRAN language pro-
vides almost no tools to facilitate an encapsulating design. Consequently,
the developers of the FLEX BODY modeling element were required to com-
prehend and modify nearly every area of the software — an error prone and
intellectually challenging project. The magnitude of the task was such that
it has yet to be fully completed. For instance, some force elements can only
be connected to a FLEX BODY via an intermediate dummy PART.

One of the chief goals of the C++ Solver project was to achieve much
higher levels of encapsulation. The developers of the FLEX BODY element
(or other future body implementations) should not have to be concerned with
the technical details of forces and joints connecting two bodies, the various
numerical methods, or the numerous other facilities of the ADAMS software.

The ADAMS modeling paradigm presents natural encapsulation barriers.
An ADAMS model consists of bodies connected to each other by forces
and joints (which we will collectively refer to as connectors). Connectors
attach to bodies at marker locations. The characteristics of a force (the
force law) may be described using function expressions and user subroutines
(collectively referred to as expressions) that contain measures measuring
marker kinematics such as position, orientation, velocity, etc.

The encapsulation goal involves implementing each class of objects in
such a way that each object may view the other in a generic fashion. In
other words, a connector should not be concerned whether the markers that
it attaches to are on a rigid body or a flexible body. Similarly, a force should
not be concerned about the contents of an expression governing its force law,
nor should the kinematic measures contained in the expression know what
kinds of markers are being measured.

It is a testament to the success of this implementation that a flexible
body and a flexible MARKER were added to the C++ Solver in a fraction of
the time it took to add the FLEX BODY to the FORTRAN Solver. Neither

3

the forces and joints nor the expressions required modification because the
FLEX BODY was automatically supported by them. Similarly, future joint
or force development will not need to make special provisions for flexible
bodies.

3.2 Bodies and markers

In the C++ Solver, a marker operates as a kinematic interface to a body.
An implementer of a new body type must, in addition to formulating the
equations of motion of this new body type, implement a new type of marker
belonging to this body.

All other facilities in ADAMS interact with markers in generic terms.
A kinematic marker measure in a function expression (e.g. DX(), VR() or
PSI()) , a force applied to a marker or a joint constraining the motion of a
marker need not know the specifics of this marker, e.g., what kind of body
the marker belongs to.

Once the marker has been implemented, the new body is fully supported
by the rest of ADAMS, which significantly limits the scope and complexity
of a project to implement a new body type.

This also justifies greater creativity in the definition of new types of mark-
ers, as seen by the following examples.

The C++ implementation of FLEX BODY markers will be enhanced in
a number of significant ways. In the FORTRAN Solver, markers on a flexible
body must coincide with a particular node and will deform along with this
node. In the C++ Solver, markers on a FLEX BODY can be attached to
zero or more nodes coinciding with none of them and move among them, as
is the case with a FLOATING marker. The marker will move as a weighted
average of the motion of the nodes that it is attached to, and a force applied
to the marker will be distributed among its nodes.

The C++ Solver will also feature a CURVE MARKER, a marker which
slides along a curve maintaining its X axis along the curve and its Y axis
along the normal to the curve. This will allow the replacement of the PTCV
(point-curve) and CVCV (curve-curve) constraints because these can be im-
plemented using the fundamental joints, e.g. SPHERICAL and REVOLUTE
joints. It will also allow users greater creativity in creating higher pair con-
straints. A Surface marker is also expected to appear in a future release of
C++ Solver.

4

3.3 Measures and Expressions

One of the greatest advances in solver technology came in the area of ex-
pressions. Expressions in the FORTRAN Solver exist in two forms: text
expressions and user written FORTRAN subroutines. These may be used to
define general modeling elements, e.g.,

DIFF/1, FUN=DIF1(1)-VX(2,3)

or

SFORCE/1, FUN=USER(1,2,3)

3.3.1 Lifting limitations

Expressions in the FORTRAN Solver suffer from several limitations.

• They only exist in a scalar form. Consequently, even when defining
a vector force, the individual components of the force must be speci-
fied and it is incumbent on the user to correctly expand vector inner
products and cross products.

• Text based function expressions and FORTRAN subroutine based ex-
pressions cannot be mixed. Constructs such as

SFORCE/1, FUN=2.*USER(1,2,3)

are not possible.

• In order to compute derivatives of function expressions, as are needed
to evaluate the system Jacobian for numerical methods in ADAMS,
the FORTRAN Solver resorts to finite differencing. Although this is
adequate for the Newton-Raphson Jacobian, it is insufficient for situ-
ations where derivatives are required directly in the Equations of Mo-
tion, such as when projecting constraint Lagrange multipliers on force
balance equations. This prevents the use of expressions to define con-
straints and is the reason that MOTION generator functions must only
be functions of time, not system state.

Expressions in the C++ Solver lift all of these limitations. The C++ Solver
has both 1D and 3D expression. In addition to the expression’s value, the ex-
pression classes can compute the first and second time derivative, and partial
derivatives relative to system state and time, without resorting to finite dif-
ferencing. In other words, the C++ Solver computes analytical derivatives

5

of arbitrary user defined expressions. Analytical expressions can often be
computed more efficiently and are always more accurate. This accuracy can
translate into faster convergence and allows them to be used in user defined
constraints.

Expressions based on user subroutines deserve a separate mention. The
legacy user subroutine interface is fully supported by the C++ Solver and
may be written in the FORTRAN or C programming languages, conforming
to the natural calling conventions of these languages. A user subroutine may
of course also be written in C++, but naturally, the C++ name mangling
must be disabled by defining the function as extern "C".

3.3.2 Analytical derivatives

It is worthwhile to describe briefly how the C++ Solver achieved its analytical
derivative capability When the FORTRAN Solver requires partial derivatives
of user expressions, it does so through finite differentiation, by perturbing
each state of the body. The C++ Solver uses a completely different approach.
The C++ Solver recognizes that a users expression never depends directly
on state. Rather it depends on measures of state, such as DX(), VARVAL(),
e.g.

f = f(M1(q),M2(q), . . .)

where M1 and M2 are measure quantities. The C++ Solver utilizes the chain
rule to differentiate such expressions:

∂f

∂q
=

∂f

∂M1

∂M1

∂q

∂f

∂M2

∂M2

∂q
+ . . .

The measure implementation in the C++ Solver provides the analytical par-
tial derivatives of the measures relative to the state variables, ∂M1

∂q
. Mean-

while, the partial derivatives of the function relative to the measure ∂f
∂M1

, are
achieved by developing differentiation capabilities into the various operators
and intrinsic functions of the expression language.

User subroutines are the only area in the expression system where the
C++ Solver must resort to finite differencing to compute partial derivatives.
Since a user subroutine is a black box for the Solver it is not capable of ap-
plying its analytical derivative algorithms. In user subroutines, measures are
accessed through calls to the SYSFNC and SYSARY utility subroutines and
the partial derivatives of the user subroutine are obtained via finite differ-
encing, by perturbing the values of the measures. Furthermore, a new utility
subroutine SYSPAR, companion to the SYSFNC and SYSARY utility subroutines

6

has been added, allowing the user to contribute partial derivatives, on a vol-
untary basis, thereby suppressing finite differencing. Refer to the Subroutine
manual for ADAMS 12.0 for details on SYSPAR.

3.3.3 User defined built-in functions

In addition to user subroutines, users will be able to customize the expression
language by extending the library of built-in functions. However, because of
the expression language’s analytical derivative capabilities, this carries with
it the burden of computing, not only the value of the function, but also the
derivatives of the function. A trivial, contrived example illustrates how a user
would completely implement a cosine function, were it not already provided:

class MY_COS : public USER_1ARG

{

static double func(const double* args, int iord1)

{

switch(ord){

case 0: return std::cos(args[0]);

case 1: return -std::sin(args[0]);

case 2: return -std::cos(args[0]);

case 3: return std::sin(args[0]);

default: return func(args,iord-4);

}

}

public:

MY_COS(Expression1D x) : USER_1ARG("COS", func, 1, &x);

};

which could now be used as any other built-in function:

using namespace AdamsSolver;

Expression1D exp = MY_COS(AX(mar1,mar2));

double now = exp.val();

sforce1->expression(exp);

The example opens the namespace for the ADAMS Solver and instantiates
a 1D expression object called exp. The example shows how the expression
can provide its value and/or be used in the definition of modeling elements,
in this case an SFORCE object called sforce1.

7

3.4 Connectors

Although the applied forces and kinematic constraints are fundamentally
different in nature, they share the common attribute of connecting bodies by
applying forces to them at marker locations.

Little needs to be said about applied forces. User customizable forces are
already one of the greatest asset of the FORTRAN Solver and few changes
were needed. Since user defined forces are based on expressions, they have of
course benefited from enhancements to the expression system, particularly
the the ability to define 3D expressions directly. For instance, the statement

VTORQUE/1, I=1, JFLOAT=2

, TX = DY(3,1)*FZ(3)-DZ(3,1)*FY(3)\

, TY = DZ(3,1)*FX(3)-DX(3,1)*FZ(3)\

, TZ = DX(3,1)*FY(3)-DY(3,1)*FX(3)

will be writable as

VTORQUE/1, I=1, JFLOAT=2, FUN = DXYZ(3,1) % FXYZ(3)

Where the percent symbol will denote a cross product.
Kinematic constraints have seen much greater improvements. Constraints

in the C++ Solver will, much like the forces, be customizable by the user. The
FORTRAN Solver features some user defined constraints, e.g. the UCON
and the MOTION, but the use of the UCON is hampered by its complexity
while the customization of the MOTION constraint is limited to functions of
time. A user defined constraint, will not suffer from such limitations. As an
example, please consider the following user defined constraint.

CONSTRAINT/1

, FUN = VARVAL(1) - VARVAL(7)

, FUN = UVZ(99) * (W(11,10) % D(99,11) - W(21,20) % D(99,21))

This constraint manages two scalar expressions and has the purpose of con-
straining these expressions to zero. The first expression enforces the equality
of two variables. The second expression is a non-holonomic gear constraint
containing the dot product of a unit-vector in the Z direction of a common
velocity marker, 99 and the difference between two cross products. Note that
W and D are angular velocity and position vectors , respectively.

The developers of the C++ Solver took the idea of user defined con-
straints further. To ensure that user defined constraints work efficiently and
correctly the built in constraints, JOINT, JPRIM, GEAR, COUPLER, MO-
TION are all implemented internally based on expressions. For example, the
internal representation of the SPHERICAL joint between markers 1 and 2 is
equivalent to:

8

CONSTRAINT/1

, FUN=DX(1,2)\

, FUN=DY(1,2)\

, FUN=DZ(1,2)

Those familiar with the formulation of the equations of motion of con-
strained multibody dynamics will appreciate the complexity of the capabili-
ties required in the expression system to support this feature.

3.5 The Application Programming Interface, API

To guarantee modularity of the ADAMS product line and the ability to em-
bed ADAMS C++ Solver in third party products, the C++ Solver is provided
as a C++ class library. Using this class library, a software developer may
create a dynamic analysis program, either by integrating it with another pro-
gram or by writing a dedicated driver program. The ADAMS/View program
is an example of the former, while the command line based C++ Solver is
an example of the latter.

The C++ class library exposes the ADAMS Solver to the full power of
the C++ programming language. Using this class library, it is possible to:

• Instantiate modeling elements and set and modify their attributes, sim-
ilar to the ADAMS statement and command languages.

using namespace AdamsSolver;

Model mod1;

Ground ground(&mod1);

Marker ground_mar1(&ground);

ground_mar1.qp(Vec3(1,2,3));

Part par1(&mod1);

par1.mass(10.);

par1.qg(Vec3(1,-1,1));

Marker mar1(&par1);

mar1.qp(Vec3(1,2,1));

• Instantiate and evaluate solver run-time expression objects

9

Expression1D exp=Sin(AZ(&mar1, &ground_mar1));

double a=exp.val();

Storque sto1(&mod1);

sto1.i(&mar1);

sto1.j(&ground_mar1);

sto1.expression(exp);

• Create user defined classes that are composites of ADAMS modeling
elements. It is also possible to create measure classes for those mod-
eling elements. An contrived example in Appendix A illustrates these
concepts. Note that although the user defined element in the example
is only a composite of ADAMS objects, it could, similarly, be a com-
posite of ADAMS objects and objects from the 3rd party produce, e.g.
graphical primitives or material primitives.

The C++ Solver API is a collection of insulating classes which present to
its user the public interface of selected ADAMS C++ Solver classes, without
exposing proprietary implementation details. Because of its design, the API
provides a compilation firewall, such that an application that is dynamically
linked against one version of the C++ Solver library does not have to be
recompiled even though a new ADAMS version is released.

3.6 ADAMS/Flex

It was already mentioned, in Section 3.1 how strong encapsulation allowed
a rapid implementation of A/Flex and that all appropriate forces and joints
were automatically supported.

Section 3.2 discussed some of the advances to flexible body markers. By
allowing markers to be offset from nodes, attaching them to multiple nodes
(or no nodes at all) and allowing them to be floating it is believed that
superior modeling practices will be possible.

The FLEX BODY derives disproportionately high benefit from the re-
moval or modification of the finite differencing scheme described in Sec-
tion 3.3.2. This earlier section described how the FORTRAN Solver must
perturb each state in order to compute partial derivatives w.r.t. this state.
When a flexible body has a large number of modal states, this can be ex-
tremely time consuming. Even when the C++ Solver must resort to finite
differentiation, it perturbs measures rather than states, recognizing that the
number of measures that a function depends on is often smaller than the
number of states. This is particularly true in the case of flexible bodies.

10

The last noteworthy modification to ADAMS/Flex is the introduction of
a new analysis coordinate system, coincident with the center of mass of the
undeformed flexible body. This is believed to have benefits for numerical
robustness in models with flexible bodies. Also, since the C++ Solver re-
stricts modes to be modes of an unconstrained body, a change which trades
minor modeling flexibility for significant computational efficiency, this opens
the possibility of creating a center-of-mass marker for the flexible body and
making it accessible to the user.

4 Compatibility

As these words are written, the C++ Solver falls short of supporting all the
functionality of the FORTRAN Solver. However, the functionality gap is
rapidly closing, and following the deployment schedule outlined in Section 7,
the C++ Solver will offer the same functionality as the FORTRAN Solver
and than some. When the C++ Solver is complete, users can expect legacy
models and user subroutines to be completely compatible with the new solver.
Both a C/C++ and FORTRAN user subroutine interface will be supported,
so users will not have to convert FORTRAN user subroutines to C/C++. The
new Solver will also support standard Solver input and output. A model can
be defined using the standard ADAMS Solver Dataset language, and then
modified or simulated using the ADAMS Solver command language. For
users who prefer to work in the ADAMS/View environment, simulations
using the C++ Solver can be invoked from here as well.

With the exception of the “.out” file, the C++ Solver will generate the
same output files as the FORTRAN Solver. Result files will contain the kine-
matic and kinetic history of your model. Request files will contain the time
history of the user’s special data request. The format of these two machine
readable files is invariant to both solvers. Message files will contain infor-
mation concerning the progress of your simulation, but the human readable
message file will receive some format changes and message content will be al-
tered. Furthermore, the C++ Solver will support the FEMDATA statement
to export component load, deformation, stress, and strain fields for input to
subsequent finite element of fatigue life analysis.

When completed the C++ Solver will perform all analysis types, includ-
ing linear analysis, and be fully integrated with all ADAMS horizontal and
vertical products.

The Section 5.4, below, discusses a few exceptions to the general compat-
ibility rules described in this section.

11

5 User Experience

Users contemplating a switch to the C++ Solver will be curious to know what
benefits and drawbacks to expect. This section describes what the users of
the new C++ Solver are likely to experience.

5.1 Speed

The conventional wisdom among the developers of high performance numer-
ical analysis software is that the FORTRAN programming language is inher-
ently more suitable to such tasks than languages such as C++. But MDI’s
initial exploration of the C++ was not motivated by speed considerations.
Rather, the modern, object-oriented features of the C++ language were seen
as a way of managing the ever increasing complexity of the ADAMS Solver
and to promote innovation.

Fortunately, initial concerns about loss in performance have proven un-
founded. Although the C++ Solver is occasionally slower, it is never sig-
nificantly slower and often faster than the FORTRAN Solver. This in spite
of the fact that serious efforts on performance tuning have not yet been a
priority.

We do not expect users migrating to the C++ Solver to be disappointed
by its lack of speed.

5.2 Accuracy

It may seem like a contradiction to say that the C++ Solver and the FOR-
TRAN Solver are equally accurate solvers, yet are not guaranteed to yield
the same solution. To resolve this apparent contradiction it is helpful to
recall that the ADAMS solution is only accurate to a user controlled error
tolerance and that two “correct” solutions can fit within this error bound.
Furthermore, in the ideal situation, if the error tolerance is tightened, the
two solvers will converge to the same exact solution. Unfortunately, real-
ity sometimes falls short of this ideal. As veteran users of ADAMS know,
it is not possible to tighten the error tolerance indefinitely because due to
finite computer precision convergence failures will often set in before the de-
sired convergence is achieved. An attempt to push the C++ and FORTRAN
Solvers to the same exact solution will often be foiled by this shortcoming.

The developers of the C++ Solver were presented with the challenge of
reaching an identical solution as the FORTRAN Solver, while attempting to
improve the ADAMS formulation in every way possible. During the devel-
opment of the C++ Solver, many enhancements were made to the way the

12

FORTRAN Solver formulates the mathematical description of a dynamic
model. None of these deviations from the formulation in the FORTRAN
Solver was taken lightly and several modification were abandoned when their
benefits were marginal.

The numerical time integration of nonlinear dynamical systems can be an
extremely challenging proposition. Many ADAMS models push the envelope
of the capabilities of the ADAMS integrators and even before the advent of
the C++ Solver many ADAMS users would experience the need to adjust
integration or modeling parameters after upgrading from one version of the
FORTRAN Solver to another or, in extreme cases, between two different
hardware architectures running the same version of FORTRAN Solver.

It would therefore be naive to expect all customer models to migrate
without incident from the FORTRAN Solver to the C++ Solver given the
number of enhancements that were made to the C++ Solver.

It is fair to ask the question whether the C++ Solver could have offered
a FORTRAN Solver compatibility mode, selectable by a user interested in
migrating a model from the C++ Solver to the FORTRAN Solver. This
idea was briefly considered, but abandoned by the C++ development team
because of the following arguments.

• The team would never have been able to mimic completely all the
behavior of the FORTRAN Solver.

• Some of the differences between the C++ and FORTRAN Solver are
extremely fundamental. FORTRAN behavior could, in these cases,
only have been mimicked at very high development cost.

• A compatibility mode would have greatly increased the cost of quality
assurance, because both modes would have to be rigorously tested.

• Inevitably users with interest in compatibility would prefer different
levels of compatibility, leading to multiple compatibility flags and an
even greater quality assurance cost in the face of multiple combinations
of these compatibility flags.

Compatibility modes were, in the end, not considered tenable.

5.3 Hidden Benefits

Users will benefit from the C++ Solver development will in ways not mea-
sured by new capabilities and performance. As we described earlier, the

13

complexity and fragility of the FORTRAN Solver had reached a point where
a stagnation of innovation was a definite risk.

The C++ Solver, through its modern architecture, is a considerable im-
provement in this regard, and users should expect a more rapid development
of features in the future.

Users will also benefit as developers now have to opportunity to experi-
ment with changing fundamental assumptions in the ADAMS software in the
search for improved performance. For instance, it has long been speculated
that Euler Parameters are a better choice of orientation states than Euler
Angles, a hypotheses that ADAMS developers were powerless to study in the
past. The C++ Solver makes such an experiment possible.

5.4 Potential Pitfalls

Users managing existing ADAMS models will chiefly be concerned whether
the new C++ Solver will have the full capabilities of the FORTRAN Solver
and, whether it will generate identical or comparable results.

5.4.1 Obsolete capabilities

Although one of the goals of the C++ Solver is to be a drop-in replacement
for the FORTRAN Solver, there are certain capabilities of the FORTRAN
Solver that MDI considers obsolete. To illustrate the various reasons for
dropping capabilities, this section would discuss a selection of deprecated
capabilities:

Dating back to the time before the ADAMS/View graphical user interface,
is an often overlooked graphical display built into the FORTRAN Solver.
Although the graphical display is often useful to those familiar with it, the
cost of replicating it in the C++ Solver could not be justified.

Some capabilities of the FORTRAN Solver are associated with discon-
tinued products. The NFORCE element, created in conjunction with the
ADAMS/FEA product is such an element. Although this element may have
found uses outside the ADAMS/FEA application, these uses are believed to
be served by the far superior ADAMS/Flex capability.

Other capabilities of the FORTRAN Solver have found little favor among
ADAMS users due to their complexity and lack of usability. The UCON
element is an example of this such a capability, which will be replaced with
a more simple modeling element, the CONSTRAINT, in the C++ Solver.

14

5.4.2 Miscellaneous legacy behavior

In the past, users have discovered, or accidentally taken advantage of undoc-
umented behavior of the FORTRAN Solver. Consider, for instance, that the
FORTRAN Solver makes calls to the VARSUB and VFOSUB user subrou-
tines in a particular order. Some users have taken advantage of this, e.g.,
by caching values computed in one subroutine for use, later, in the subrou-
tine. Unfortunately, this behavior has not been replicated in the C++ Solver,
where modeling elements are evaluated in no particular order.

In other cases, users with complex user subroutines have taken advan-
tage of undocumented function interfaces to the FORTRAN Solver. Usually,
these users have learned about these interfaces through communications with
MDI personnel and feel justifiably entitled to continue to call these functions.
However, records have rarely been kept at MDI, indicating that a user has
been provided information about an undocumented interface. It is, conse-
quently, impossible to guarantee successful deployment of all existing user
subroutines.

6 Quality Assurance

MDI takes the testing of the C++ Solver extremely seriously. Fortunately,
the developers of the C++ Solver benefit from an arsenal of tests, developed
through the history of the FORTRAN Solver, with carefully validated results.
Throughout the development of the C++ Solver its developers have ensured
that the C++ Solver also returns valid results from these tests. Coverage
analysis will be performed to ensure that the FORTRAN Solver test suite
adequately exercises the C++ Solver.

The second round of testing will involve the test suites managed by MDI’s
Vehicle Products Group. These tests contain complete models that are more
representative of real world models than the in the FORTRAN Solver’s test
suites that many are targeted at a single element or capability (unit tests).

Additionally, the C++ Solver will take advantage of its API, which will
facilitate unit testing at a much finer granularity than is currently possible
with the FORTRAN Solver. For instance it can be hard to target exceptional
numerical problems by building a model in an ADAMS dataset, the only
input method for the FORTRAN Solver, while presenting this numerical
challenge through the API may be quite viable.

The C++ Solver will also have its own performance analysis test suite to
gauge its performance against the FORTRAN Solver, to prevent performance
regressions and to measure performance gains as developers shift their focus

15

to improving the performance of the software.
In parallel with these testing activities users are encouraged to run their

models with the C++ Solver and report their experience to MDI. The devel-
opers of the C++ Solver have strived to anticipate the myriad ways in which
creative users have utilized the ADAMS software in their models, so that the
transition for the FORTRAN Solver to the C++ Solver may go smoothly.
However, the best way for users to prevent future problems running their
models with the C++ Solver is to participate in the testing of this software,
as soon as it supports the set of capabilities used in their models.

7 Deployment

A C++ Solver deployment plan is emerging and will be presented to the
user community to communicate the transition process. The plan calls for
a roll out of the C++ Solver in stages to different users, while scaling back
FORTRAN Solver development activity until demand for it vanishes and it
is eventually retired.

The C++ Solver has, for some time, been the Solver of choice for the
ADAMS Software Development Kit (SDK), which is used in embedded CAD
applications. These applications have, historically, had access to a limited
feature set, making the C++ Solver an effective choice.

In recent versions of ADAMS, the C++ Solver has been available to the
general ADAMS user, either as an alternative command line solver, or as
an alternative built-in solver inside ADAMS/View. In an attempt to make
it easy for the A/View user to experiment with the two solvers, switching
solvers was made extremely easy. Valuable feedback has resulted from this
configuration.

The goal with the next release of ADAMS, the 12.0 release, is to make
the C++ Solver a credible alternative for the power users in the MDI Vehicle
Product Group, thereby making it viable to test the C++ Solver with the
Chassis products during the 13.0 development cycle. Although the C++
Solver will not be one hundred percent feature complete, relative to the
FORTRAN Solver, before the 12.0 release, nearly all fundamental modeling
and analysis capabilities will be available.

The goal of the 13.0 release is to make the C++ Solver the default solver
for Chassis products. The FORTRAN Solver will remain an easily accessed
alternative to ensure user comfort and to operate as a safety net in eventuality
that the C++ Solver falls short of its goals. It is presumed that although the
C++ Solver will, by the 13.0 release, offer capabilities not shared with the
FORTRAN Solver, the Chassis products will use these features sparingly to

16

ensure model compatibility.
Development activity on the FORTRAN Solver will soon be reduced to

support and essential maintenance, recognizing that time is much better
spent developing capabilities in the more extensible C++ Solver. MDI recog-
nizes that with the slowing down of FORTRAN Solver development activity
it is paramount that ADAMS users quickly migrate to the C++ Solver. It
is hoped that the need for the FORTRAN Solver will gradually vanish, but
if it does not, it is possible that the FORTRAN Solver will be available for
a long time.

17

A A sample API model

#include <vector>

#include "adams_api.h"

using namespace AdamsSolver;

class Link

{

Part *link;

Marker *left, *right;

Joint *left_pin;

public:

Link(Adams* parent)

{

link = new Part(parent);

left = new Marker(link);

right= new Marker(link);

left_pin=new Joint(parent);

left_pin->jtype(Joint::REVOLUTE);

left_pin->j(left);

}

~Link()

{

delete link;

delete left

delete right;

delete left_pin;

}

void mass(double ms){link->mass(ms);}

double mass(double ms) const {return link->mass();}

void length(double len)

{

left->qp(-len/2,0,0);

right->qp(len/2,0,0);

}

double length() const

{

return DX(right,left,right).val();

}

18

Marker* i() const {return left_pin->i();}

Marker* j() const {return right;}

void i(Marker* pJ){left_pin->i(pJ);}

};

// ##

class Chain : public Adams

{

double total_mass, total_length;

int linkCount;

std::vector<Link*> allLinks;

Joint *right_end_pin;

public:

Chain(Adams* parent)

: Adams(parent), total_length(0), total_mass(0)

{

right_end_pin=new Joint(parent);

right_end_pin->jtype(Joint::REVOLUTE);

links(1);

}

~Chain()

{

std::vector<Link*>::iterator i;

for(i=allLinks.begin(); i!=allLinks.end(); ++i)

delete *i;

delete right_end_pin;

}

void links(int number_of_links){

if(number_of_links==linkCount) return;

if(number_of_links<1)

throw Msg::ErrorMsg("Chain must one or more links");

Marker* pI=i();

std::vector<Link*>::iterator ln;

19

for(ln=allLinks.begin(); ln!=allLinks.end(); ++ln)

delete *ln;

allLinks.clear();

Link* previous=new Link(this);

allLinks.push_back(previous);

for(int j=1; j<number_of_links; j++)

{

Link* next=new Link(this);

allLinks.push_back(next);

next->i(previous->j());

previous=next;

}

right_end_pin->i(previous->j());

mass(total_mass);

length(total_length);

i(pI);

}

void mass(double m)

{

double mass_each = m/linkCount;

std::vector<Link*>::iterator i;

for(i=allLinks.begin(); i!=allLinks.end(); i++)

(*i)->mass(mass_each);

}

void length(double l)

{

double length_each = l/linkCount;

std::vector<Link*>::iterator i;

for(i=allLinks.begin(); i!=allLinks.end(); i++)

(*i)->length(length_each);

}

void i(Marker* imar){ allLinks[0]->i(imar);}

void j(Marker* jmar){ right_end_pin->j(jmar);}

20

Marker* i(void) const

{

if(allLinks.size()==0)

return 0;

else

return allLinks[0]->i();

}

Marker* j(void) const { return right_end_pin->j();}

class Span : public Expression1D

{

public:

Span(Chain* chain)

: Expression1D(DM(chain->i(),chain->j())){}

};

};

// ##

main()

{

Model mod1;

Chain ch1(&mod1);

Part p1(&mod1), p2(&mod1);

Marker m1(&p1), m2(&p2);

ch1.mass(234);

ch1.links(100);

ch1.i(&m1);

ch1.j(&m2);

cout << Chain::Span(&ch1).val() << endl;

}

21

	Introduction
	The Next Generation ADAMS Solver
	Enhancements in Solver Technology
	Software modularity
	Bodies and markers
	Measures and Expressions
	Lifting limitations
	Analytical derivatives
	User defined built-in functions

	Connectors
	The Application Programming Interface, API
	ADAMS/Flex

	Compatibility
	User Experience
	Speed
	Accuracy
	Hidden Benefits
	Potential Pitfalls
	Obsolete capabilities
	Miscellaneous legacy behavior

	Quality Assurance
	Deployment
	A sample API model

