
Application of ADAMS/SDK as part of a
comprehensive machine tool simulation system

B. Denkena, S. Rehling, K. Tracht, Institute of Production Engineering and Machine
Tools, University of Hannover

Keywords: ADAMS/SDK, machine tool simulation

Abstract

As part of a simulation system for the simulation of manufacturing processes on metal
cutting machine tools, the dynamical behaviour of the machine tool structure during the
manufacturing process has to be simulated.

The simulation of the mechatronical system ‘machine tool’ demands the consideration of
all system components, which interact during the manufacturing process. For the
simulation, these system components can be partitioned into three system classes: The
system class ‘machine dynamic’, which simulates the dynamic behaviour of the machine
tool structure; the system class ‘control and drives’, which simulates the numerical
control, the programmable logic controller and the drives; and the system class ‘cutting
process’, which simulates the forces which result from the interaction between the
cutting tool and the workpiece.

The simulation system is designed as an autonomous, modular application with one
simulation module for each system class. As simulation tool for the simulation model
‘machine dynamic’, ADAMS is used. The implementation of ADAMS in third party
applications is well known by the example of CAD Systems (e.g. Unigraphics), which
implement ADAMS/SDK to provide dynamic simulation functionality. ADAMS/SDK
allows the development of autonomous applications, which are independent of the
common ADAMS environment. The main advantage is, that the ADAMS/SDK library
provides full control of the simulation at runtime. Furthermore, it offers the possibility to
couple the ADAMS solver with external calculation modules via fast in-process
interfaces.

This paper describes the application specific requirements on ADAMS/SDK, which are
made by the simulation system. Therefore a brief overview of the functionality of the
system is given firstly. Further on the experiences with the ADAMS/SDK application-
programming interface (API) is described, which were made during the development
phase. In this context the possibilities to apply externally calculated forces on the model
and the possibilities to query simulation results during runtime are discussed. Positive
as well as negative aspects of the API are highlighted.

1. Introduction

Nowadays, in metal cutting manufacturing the exact machining result cannot be
determined without experiments on the machine. This results in expensive try-out in
mass production and subsequent machining in batch production.

With the target of reducing costs and throughput time high efforts are made to develop
methods and systems for the prediction of the real machining result.

The development of a system for computer-based simulation of manufacturing
processes on metal cutting machine tools (lathes, mills) is the goal of a group of
scientists at the Institute of Production Engineering and Machine Tools, University of
Hannover. The main application of this system called CutS (shortcut for “Cutting
Simulation”) is to predict the resulting geometry of the machined workpiece by a
comprehensive simulation of the whole manufacturing process. Based on a comparison
of the simulation results to the CAD-data of the workpiece, the manufacturing
inaccuracies can be determined and the NC-Code of the workpiece can be optimised.

The simulation of the mechatronical system ‘machine tool’ demands the consideration of
all system components, which interact during the manufacturing process. For the
simulation, these system components can be partitioned into three system classes: The
system class ‘machine dynamic’, which simulates the dynamic behaviour of the machine
tool structure; the system class ‘control and drives’, which simulates the numerical
control, the programmable logic controller and the drives; and the system class ‘cutting
process’, which simulates the forces which result from the interaction between the
cutting tool and the workpiece.

This paper introduces the integration of ADAMS/SDK as a part of the simulation system
CutS, bound into a module for the dynamical simulation of the machine tool structure,
which represents the system class ‘machine dynamic’. To give an overview about the
integration and functionality of this module within the scope of CutS, the structure and
functionality of the whole system CutS is explained firstly.

2. The Simulation System CutS

2.1. System Overview

CutS is designed as a modular simulation system, in which each of the different system
components named above is implemented as a stand-alone simulation module. The
core of the system is the so-called “CutS Kernel”, which is responsible for the
communication between the modules and the control of the simulation. The modules and
the kernel communicate via a well-defined interface that implements the Microsoft
(Distributed) Component Object Model (COM/DCOM) technology. The use of the
COM/DCOM technology enables the system to run the simulation and the
postprocessing on different computers in a network to distribute the processor load. The
architecture of CutS is shown in figure 1.

The modular concept of the simulation system and the standardization of the interface
allows to replace single modules and to extend the system. Due to this modularity the

system is an ideal research platform to study and analyse different simulation methods
and modelling techniques.

2.2. Interaction between the simulation modules

The three simulation modules ‘machine dynamic’, ‘control and drives’ and ‘cutting
process’ are working together interdependently and are interconnected to form a closed
loop. This is shown in figure 2. The single modules work as follows.

The input of the simulation module ‘control and drives’ consists of NC-data files of the
workpiece which are generated by a CAM application and the simulated axis positions
which are fed back from the simulation module machine dynamic. The NC-data is
processed by an interpolator, which generates nominal values for the positions and
velocities of the machine tool axes. Therefore a virtual NC kernel from Siemens is used
which behaves exactly the same as the Sinumeric 840D NCU on the real machine. For
the simulation of the machine tool’s position control and drives also a realistic simulation
model of the control circuit and drives is used. This model is parameterised by the real
machine tool initialisation data. The output of the simulation module ‘control and drives’
are the forces/moments that are generated by the drives.

These forces/moments act on a multibody simulation model of the machine tool structure
that is simulated by ADAMS. The model consists of a combination of rigid and flexible
bodies. The calculated state of motion between the cutting tool and the workpiece is the
input of the simulation module ‘cutting process’ and acts as the basis for the calculation
of the cutting force and the material removal, which then results in the actual shape of the
workpiece. The reaction of the cutting force is fed back to the module ‘machine
dynamic’, finally the simulated positions of the machine tool axes are fed back to the
simulation module ‘control’ and drives to close the loop.

2.3. Implementation

Due to the integration of different simulation tools for the different simulation modules
and because of higher system performance, the kernel as well as all simulation modules
are implemented in C++. The modules include the function libraries and COM interfaces
respectively of the concerning simulation tools. Thus it is possible to instantiate fast in-
process interfaces and to minimise latencies caused by data transfer between the
modules.

3. Simulation module machine dynamic

In the following the characteristics, requirements and the implementation of the
simulation module machine dynamic, which includes the ADAMS/SDK function library,
are described in detail.

3.1. Requirements

One of the main requirements of the simulation system CutS is an optimised simulation
speed. For this reason the simulation module machine dynamic has to be optimised
concerning the simulation performance.

Another requirement is to have the possibility to model significant elasticities of the
machine tool structure (i.e. the cutting tool). Therefore ADAMS/Flex offers sufficient
possibilities.

To realize the coupling and synchronisation to different simulation modules, full time
control during the simulation has to be provided to the controlling application. This
results from the position control of the machine tool, which has a constant time cycle
(e.g. 1 ms). Thus it has to be assured that the solution of the module ‘machine dynamic’
is well known at these equally spaced discrete points in time. Furthermore there has to
be a possibility to consider external calculated forces and parameters during the
simulation to be able to process the inputs from another simulation module.
ADAMS/SDK meets all these requirements through the solver API and the
implementation of user-written subroutines.

3.2. Modelling, time variant Parameters

The modelling work to build the machine tool model is done using ADAMS/View. The
geometry of the structure components is imported from a CAD-system. The modal
representations of all flexible bodies are calculated by ANSYS ™ and then imported via
ADAMS/Flex. Figure 3 shows as an example the model of a machine axis that is driven
by a linear motor.

All non-linear modelled forces and transfer elements (e.g. friction, spring-damper
elements) are defined by external forces and field elements and are named by a CutS
internal naming convention. This allows the identification of axes and relating drive
forces/moments by other modules. During the simulation, these field elements are
calculated by user-written subroutines based on empirically determined characteristic
curves. In an analogous manner the external forces are calculated by the corresponding
user-written subroutine.

After the modelling process, the model is exported as ADAMS/Solver dataset file and
can be transferred to the module ‘machine dynamic’.

4. ADAMS/SDK Interface

The module ‘machine dynamic’ is designed as a stand-alone Win32 application, which
implements a rudimentary user interface for setting parameters and output status
messages. Therefore the Microsoft Foundation Classes (MFC) are used. A wrapper
class named CAdamsModule serves as container for the ADAMS/SDK API and
manages the interaction between the ADAMS library and the main application (see
figure 4).

4.1. User-written-subroutine DLL

For the implementation of the described functionality different user-written subroutines
are necessary. The ADAMS/SDK only accepts autonomous dynamic link libraries
(DLLs) as container for user-written subroutines rather than function pointers to the
corresponding routines. These DLLs are linked to the ADAMS/SDK library through the

API function call InitUserSubs(), so an autonomous DLL had to be programmed for the
simulation module machine dynamic.

The user-written subroutine DLL which is used by the simulation module machine
dynamic implements the subroutines GFOSUB(), FIESUB() and VARSUB() to
manipulate the variable model parameters during the simulation. By the use of
GFOSUB() all forces which are produced by the drives and the cutting process, as well
as all non-linear modelled friction forces are calculated. FIESUB() sets the values for the
non-linear modelled stiffness and damping parameters of the force trans fer elements.
The corresponding characteristic diagrams base on empirically determined values of
the real machine. VARSUB() is used to update the changing mass and inertia
properties of the workpiece, which significantly loses mass during the manufacturing
process.

The actual values of the axes and tool positions are determined after each simulation
time step using the helper function SYSARY() from the utility library and are transferred
to the other simulation modules. Thus a closed implementation of the ADAMS/Solver
with full simulation control has been established.

4.2. Performance

Due to the optimised integration of the ADAMS/SDK into the CutS environment, which
accesses the solver database only when it is necessary, the simulation speed (including
visualization and animation of the geometry) has been increased. A comparison
between the simulation of a machine model in ADAMS/View and the same model using
CutS was made. To simulate the drives in ADAMS/View as well as in CutS sinusoidal
dummy forces were acting on each model. The simulation parameters were the same in
both applications. The comparison showed that the CutS simulation was solved eleven
times faster than the same simulation in ADAMS/View.

5. Problems and suggestions

The ADAMS/SDK has the limitation, that only autonomous DLLs are possible sources
for user-written subroutines. In the present case, the frame application as well as the
ADAMS/SDK library have to access the variables that affect the user-written
subroutines during the simulation. This is only possible by applying a little programmatic
trick. Inside the user-written subroutine DLL global variables are declared which serve
as a data source for all values affecting the simulation. The DLL is then loaded by the
frame application just before InitUserSubs() (the API function witch connects the solver
to the user-written subroutine DLL) is called. This makes the relating variables visible in
the scope of the frame application. Afterwards InitUserSubs() tries to load the DLL a
second time, which is ignored by the system, since the DLL is already present in the
process space of the frame application. This is shown in figure 4. Thus both the frame
application and the ADAMS/SDK library access the same variables of the user-written
subroutine DLL. Here the suggestion is to implement an interface that takes function
pointers to the user-written subroutines. This would reduce the programming effort.

A second point worth mentioning is that there isn’t any user-written subroutine that is
called at the end of the simulation. In the present case, the simulation ends after each

time step of e.g. 1 ms and is then started again for the next time step. After each time
step the simulation result has to be read out of the solver database, which is done via
the helper utility SYSARY(). SYSARY() allows to access the values of various attributes
(e.g. position and orientation) of solver objects at runtime. The problem is that
SYSARY() can be called out of a user-written subroutine only. Otherwise it has the
wrong calling context. A work around is to implement the calls to SYSARY() into one of
the three used subroutines, but these are called after each iteration step, so there are
probably too many unnecessary database accesses. A subroutine which is called after
the end of the simulation would help.

6. Conclusion

A comprehensive simulation system which includes different interdependent simulation
tools has to manage interaction and communication between the connected modules.
This communication causes a serious bottleneck and slows down the whole system.
With the use of the ADAMS/SDK library fast inter-process data interfaces could be
established and the lag time which results from data transfers between single modules
has been effectively minimized.

ADAMS/SDK offers a fast calculating and easy accessible simulation library for the
application CutS. The economic efficiency of a stand-alone implementation also has to
be considered. CutS is a system for which a machine model has to be modelled only
once and is then reused as calculation basis for the manufacturing simulation of multiple
varying workpieces. This application causes the stand-alone implementation to be
economically efficient. The performance gain only could not legitimate such a model.

 Figure 1: Structure of the simulation system CutS

Figure 2: Interconnected simulation modules form a closed loop

CutO – Module group
„Application“

Module group
„Administration“

CutS – Module group
„Simulation“

NC-OptimisationNC-OptimisationNC-Optimisation

CutS
KERNEL

Simulation Module
Machine

Simulation Module
Cutting Process

Simulation Module
Control/Drives

Geometry
handling

Solution-
Database

Main User
Interface

Geometry
handling

Geometry
handling

Solution-
Database
Solution-
Database

Main User
Interface

Main User
Interface

Extension-
Module X
Extension-
Module X
Extension-
Module X

COM/DCOM Interface

Simulation Module
Control/Drives

Simulation Module
Cutting Process

Simulation Module
Machine Dynamic

NC-
Code

Workpiece
contour

P
ositions

Forces
/ M

om
ents

M
otions

F
orces

Figure 3: Model of machine axis with linear motor

Figure 4: Implementation of the user-written subroutine DLL

Machine simulation
Module

Executable

User Interface

Wrapper Class

CAdamsModu le

ADAMS/SDK
adamssdk.dll

ADAMS Solver
and Database

User Sub DLL

Global Variables

GFOSUB
FIESUB
VARSUB

