ADAMS

ADAMS User Conference Japan 2001

Mechanical Simulation in the Engine Development Process

> Dipl.-Ing. Christoph **Ortmann** Mechanical Dynamics Inc., Ann Arbor

Dr.-Ing. Martin **Rebbert**, Dipl.-Ing. Philipp **Kley** FEV Motorentechnik GmbH, Aachen

CAE in the Engine Development Process

Objectives

- Cost reduction
 - Less hardware prototypes
 - Limitations of measurements
- Shorter development cycles
- Increase in product quality
- Support innovation

Application

- Analysis
 - Design studies based on physical input data
 - Problem solving based on validated detail models

Mechanical Dynamics

- Data exchange
 - Between design and test
 - Between OEM and supplier

CAE Software Requirements

- Open and extensible
- Easy to use
- Multiple levels of refinement
- Modular

Topology

- 6 Cylinder
- 4 Main bearings
- 2 crank pins per throw
- Intermediate webs
- Definition contained in template

Data

- Subsystem: V-angle, stroke, bore,...
- Components: Inertia, Stiffness,...
- Definition contained in database

Free forces and moments

Engine Order	rotating force [N] lateral axes	oscillating force [N] lateral axes	rotating torque [N mm] lateral axes	oscillating torque [N mm] lateral axes	oscillating torque [N mm] rotation axis
1.0	0.0	0.0	2714756.70	0.0	0.0
2.0	0.0	0.0	-215022.04	0.0	0.0
3.0	0.0	0.0	0.0	0.0	507579.03
4.0	0.0	0.0	4381.60	0.0	0.0

Static and dynamic amplitudes and phases

Engine Order	rotating stat. amp. [kgmm] phase [deg] lateral axes	oscillating stat. amp. [kgmm] phase [deg] lateral axes	rotating dyn. amp. [kgmm²] phase [deg] lateral axes	oscillating dyn. amp. [kgmm²] phase [deg] lateral axes	oscillating dyn. amp. [kgmm²] phase [deg] rotation axis
1.0	0.0	0.0	2.750624e+004	0.0	0.0
	0.0	0.0	180.0	0.0	0.0
2.0	0.0	0.0	-5.446572e+002	0.0	0.0
	0.0	0.0	0.0	0.0	0.0
3.0	0.0	0.0	0.0	0.0	5.714279e+002
	0.0	0.0	0.0	0.0	0 .0
4.0	0.0	0.0	2.774682	0.0	0.0
	0.0	0.0	0.0	0.0	0.0

Mass moments in the engine reference system

FEV

Model Refinement:

DAMS

Torsional vibration damper

Simulation:

Influence of vibration damper on the nominal torsion stress

Dynamics

Model Refinement: Beam crank shaft, hydrodynamic bearings

Simulation:

Internal balancing

Dual-Mass-Spring Approach

- Linear and non-linear stiffness
- No internale dynamics
- Sufficient if valve train is not primary focus
- Very fast

Multi-Mass-Spring Approach

- Based on physial data
- Internal dynamic effects
- Coil clash
- Only longitudinal direction
- High Accuracy
- Relative CPU expensive

Eigen-Frequency vs Disp.

Flexible-Spring Approach

Detailed Model

- Flexible body with solid brick elements
- Flexible bodies connected via fixed joints
- Contact between flexible bodies
- Requests at all joints

Force and Torque vs. Displacement

Flexible-Spring Approach

At-point joint primitive Nonlinear forces superimposed on Linear flexible body the flexible body Hooke joint

Equivalent Model

- 1 node per flexible body
- Linear beams between nodes
- Solution of the Eigen-value problem

One flexible body (modal)

Force vs. Displacement

alent_displacement Time= 0.0030 Frame=

Comparison between Models

Valve Acceleration vs. Time

Force vs. Displacement

Component Optimization and Integration

- Small changes of the wire path
- Neglectable influence on stiffness characteristic
- Large influence on the lateral forces v Loads on valve guide

Y Force vs. Time

Application Example: Timing Chain

- Simple constrained based model
 - Rotational coupling
- Spring per span type model
 - Rotational vibration
- Detailed model
 - Roller/bush chain
 - Silent (toothed) chain
 - Contact forces
 - Chain internal forces
 - Tensioner studies

Application Example: Gear

- Constrained based model
 - Rotational coupling
- Force with backlash
 - Bearing loads
 - Rotational Vibrations
- Force considering tooth profile
 - NVH studies
 - Meshing frequency
 - Friction

Application Example: Timing Belt

- Simple constrained based model
 - Rotational coupling
- Spring coupled masses per span
 - Rotational vibration
- Detailed model
 - Trapezoidal belt
 - Non-linear material characteristic
 - Contact forces
 - Belt internal forces

Summary and Outlook

Application

- ADAMS/Engine applicable in all phases of the devlopment process in all areas
 - Modular
 - Adjustable refinement level
- Major Focus
 - New intermediate refinement levels
 - Advanced crank train analysis capabilities
 - FEM interface improvements
 - EHD bearings
 - Piston secondary motion
 - NVH analysis

