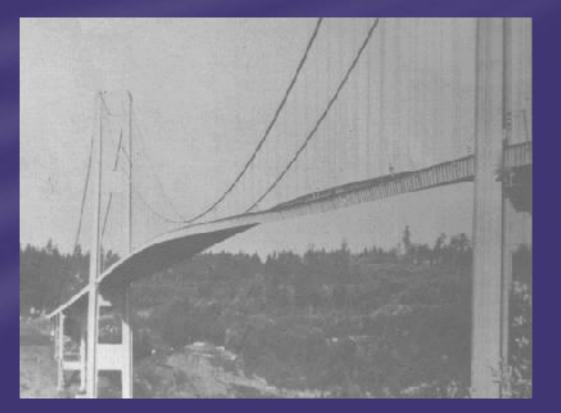


Virtual NVH Process with ADAMS/Vibration

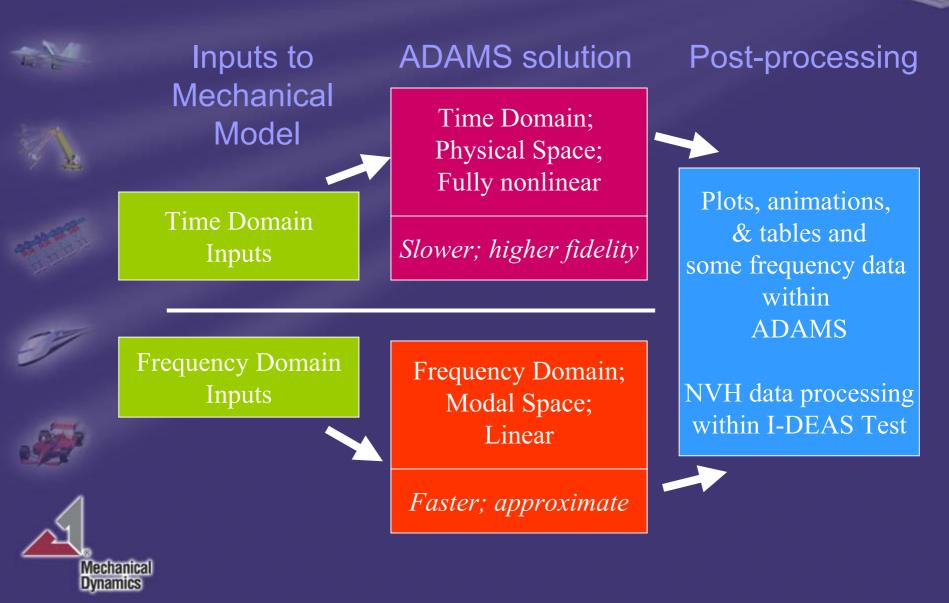
Gabriele Ferrarotti Sr. Industry Manager 2001 MDI Japan Users Conference

- Integrating vibration investigation in the development process
- Accessing continuous product development

Tacoma Narrows Bridge



New Tacoma Narrows Bridge



The Virtual NVH Process

The Time Domain Approach

Inputs to Mechanical Model

Time Domain Inputs **ADAMS** solution

Time Domain; Physical Space; Fully nonlinear

Slower; higher fidelity

Post-processing

Plots, animations, & tables and some frequency data within ADAMS

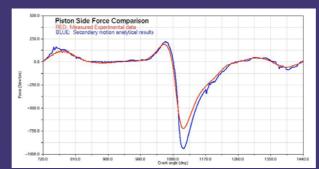
NVH data processing within I-DEAS Test

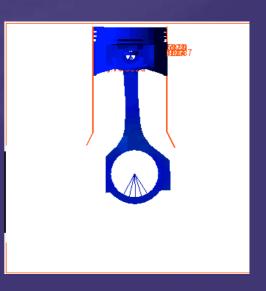
The Time Domain Approach

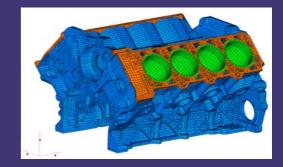
- Independent from physical testing
- System-level approach (opposed to FE-like component approach)
- ADAMS/Solver enables to take into account non linearity effects
- CPU time increases proportionally with the required frequency resolution

Case Study: Ford Motor Company

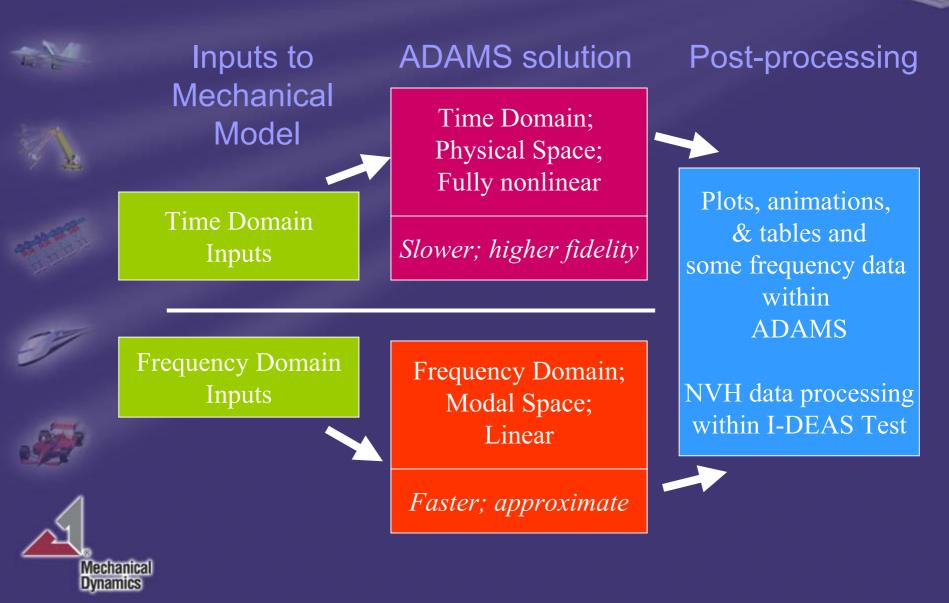
Business: Major automotive manufacturer


Challenge: Estimate radiated block noise (strong customer dissatisfier) caused by side thrust forces


Solution: FFT of piston side forces from an ADAMS detailed model are used as input for the NVH analysis in the FE tool to predict sound power level and correlate it with measurements


Value:

Piston slap noise in different engine configurations can be virtually predicted earlier in the design process



The Virtual NVH Process

The Frequency Domain Approach

Inputs to Mechanical Model

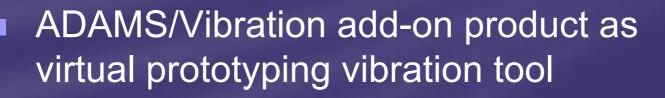
ADAMS solution

Post-processing

Plots, animations, & tables and some frequency data within ADAMS

Frequency Domain Inputs

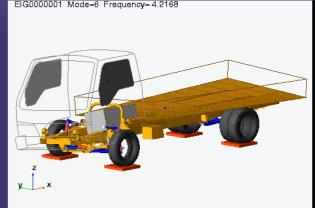
Frequency Domain; Modal Space; Linear


Faster; approximate

NVH data processing within I-DEAS Test

The Frequency Domain Approach

- Allows to take your system to different operating points to analyze the vibratory behavior (without having to create new models!)
- Allows various evaluations in modal space, including forced response in the frequency domain, FRF and mode shape analysis, modal participation factors
- Validity within the limits imposed by linearization approach



Case Study: Isuzu

Business: Major truck manufacturer

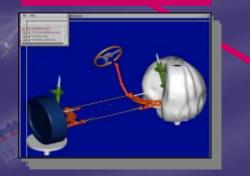
Challenge: Create vehicle natural frequency map to investigate vibration problems bypassing the expensive, time consuming typical experimental approach

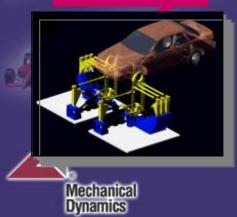
Solution: Development of customized ADAMS environment able to allow to review frequency data with the help of a web tool

Value:

Mechanical Dynamics Accurate evaluation of vehicle vibrations over 50Hz helps to shorten development time and to cut cost

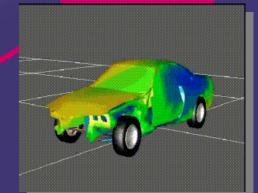
- Integrating vibration investigation in the development process
- Accessing continuous product development



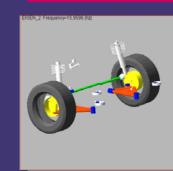


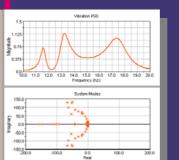
Integrated NVH in the Functional digital Prototype

Packaging


Durabilitv

Virtual Prototype

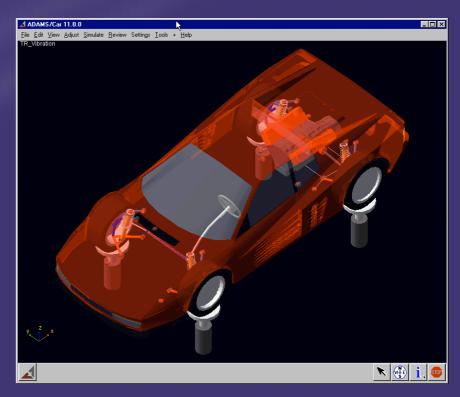

Handling



Controls

NVH

Typical Automotive System-Level Scenario

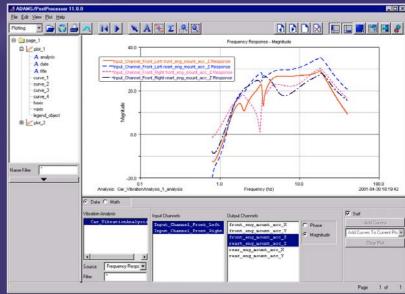

Engine-Mount Manufacturer's Sensitivity Test

- Input (to front wheels):
 - In-phase sine sweep
 - ◆ 0.8 40.0 Hz
 - 2mm peak-to-peak displacement

Measure: acceleration at 3DOF on both sides of all engine mounts. Also at selected points on body.

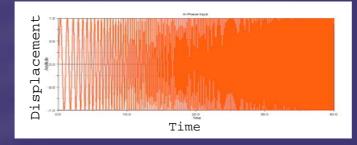
Graph: response vs frequency, with phase.

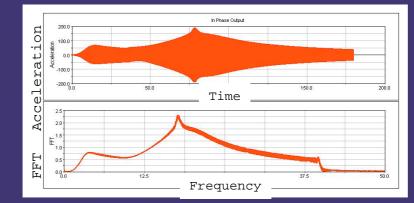
Mechanical Dynamics


Mechanical Dynamics

Typical Automotive System-Level Scenario

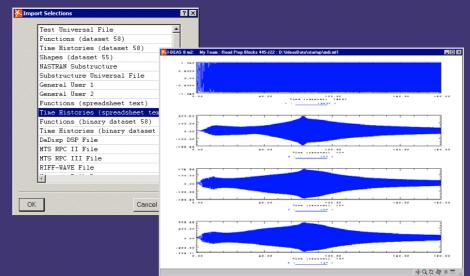
In modal space with ADAMS/Vibration:


- Instantaneous calculation of FRFs between any input and any output to quickly understand vehicle dynamics
- Forced vibration animation
- Modal contribution map for selected input channel and frequency


Typical Automotive System-Level Scenario

In physical space with ADAMS/Solver:

- Input specified in time domain (frequency sweep)
- Solution in time domain, using $\Delta t = 0.002$, $t_f = 180$ sec
- Output in time domain (acceleration requests in the engine mounts)


Typical Automotive System-Level Scenario

 ADAMS time domain results provided to NVH analyst in TXT - RPC format

> Can be imported into I-DEAS Test from MTS

🔯 Inbox - Microsoft Out			
Ele Edt Yew Favgrite			
33 New - 🚭 🖓 🗡	Reply Reply to Al	Forward 🛃 Send/Regeive 🌚 Find 🖉 Organize 🔛	- 3.
Inbox			·
Telder Luts >> >> >> >> >> >> >> >>	 bel Curre 0 Good Selevy 0 Bood Selev	Your all has been kind on Tecking.com (model) RE: Universential noise regs PPT Residual Letter RE: Spreadheet dampli stapp RE: Index (Hendel Swinghon, com RE: Swinghon, Gene National Swinghon, Com National Swinghon, Com National Swinghon, Com	umn, which ngrui. I need e working with 18 produced as produced as, the 4 I propose

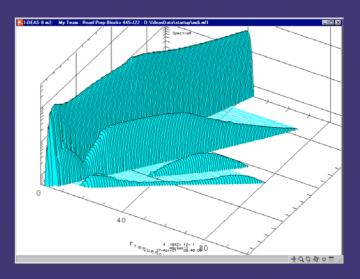
to put it together and provide it for the conference CD. I'll work on the

NH subut DOP neuro subut ODP neuro PE dat	 front_sweep_fourpost_out_phase_front_sweep_fourpost_out_phase_accel_reat_es front_sweep_fourpost_out_phase_front_sweep_fourpost_out_phase_accel_reat_es front_sweep_fourpost_out_phase_front_sweep_fourpost_out_phase_accel_reat_es front_sweep_fourpost_out_phase_front_sweep_fourpost_out_phase_accel_reat_es 	gine_mount_left m
Image Image MVG Observed Image V1 = 0 Image		

Mechanical

Dynamics

Mechanical Dynamics


Typical Automotive System-Level Scenario

- Observations:
- Harmonics are due to nonlinear components in the model (bushings, mounts, suspension dampers)

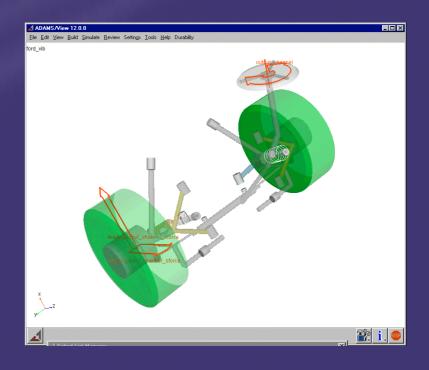
Conclusions:

- "Modal space analysis" with linearized model provides fast qualitative NVH information
- "Physical space analysis" with complete non-linear model provides higher fidelity NVH information

Typical Automotive System-Level Scenario

Wheel Out Of Balance (OOB) Analysis

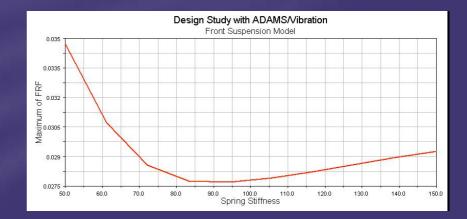
Input:


 Unbalanced masses (leading and lagging) on right wheel (5 g, 2 cm)

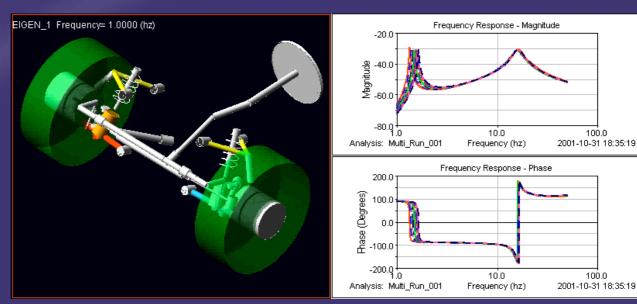
Measure:

- local rotational velocity at steering wheel
- Graph:

Mechanical Dynamics


- Frequency responses
- Sensitivity study to spring stiffness values

ADAN


Typical Automotive System-Level Scenario

Investigate the steering wheel resonance shift due to change in spring stiffnesses

100.0

100.0

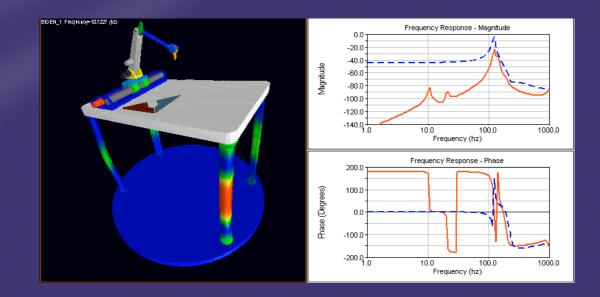
Additional Automotive System-Level Scenarios

Random Road Profile Analysis Observe the PSD response of vehicle components to PSD inputs at the contact patch

Powertrain Out Of Balance (OOB) Analysis

 Observe the frequency response of vehicle components to out of balance inputs acting on powertrain components (i.e. driveline vibration analysis)

- Integrating vibration investigation in the development process
- Accessing continuous product development

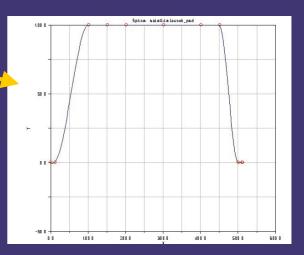


ADAMS/Vibration 11.0 offers:

- Frequency domain input forcing functions
- Frequency response function calculations
- Modal participation tables
- Forced vibration animation

PSD

Step 1: Create input channels, output channels, and actuators

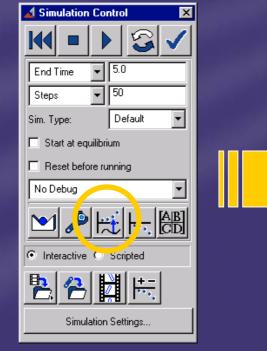

1
-
T

Mechanical

Dynamics

Create Vibration	table.input_table.input_C	hannel 2		<u>×</u>				
Input Channel Name		nonnor_z						
Input Marker	МК34							
Translational O Rotational								
Force Direction	🔿 Local	ΟX						
	 Global 	ΟY						
		ΘZ						
Actuator Parameters								
C Swept Sine								
C Rotating Mass								
	Mass Spline Name SPLINE_1							
- · · · ·	Interpolation Type	- Lina						
O User								
		<u>o</u> k	Apply	<u>C</u> ancel				
				0				
				Spl				

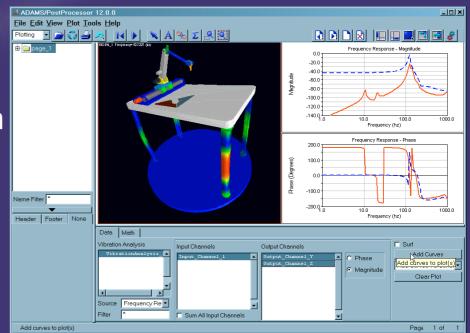
🔏 Create Vibration Output Channel 🛛 🛛 🔀									
Output Channel Name	.table.Output_Channel_Y								
Output Function Type	Predefined								
Output Marker	Output Marker laser_tip								
Global Component									
Displacement C X O Z O Mag									
	<u>O</u> K <u>A</u> pply	<u>C</u> ancel							



Step 2: Run Analysis

A Perform Vibration Analysis	×
Vibration Analysis 💽 Vibra	ationAnalysis_mhagx
Operating Point 💽 S	itatic O Assembly O Script
Import Settings From E	xisting Vibration Analysis
Forced Vibration Analysis C Norma	al Mode Analysis
Input Channels	Output Channels
Input_Channel_mhagx	.h.Output_Channel_dz_hiravl .h.Output_Channel_dz_hiravr .h.Output_Channel_dz_hirahl .h.Output_Channel_dz_hirahr
Frequency Range (hz)	Logarithmic Spacing of Steps
Begin 1.0	
End 100.0	
Steps 200	
Reuse Existing State Matrix	Modal Energy Computation
	OK <u>Apply</u> Cancel

Define inputs/outputs to be used, operating point, frequency range, and steps



Mechanical Dynamics

The ADAMS/Vibration Solution

- System Modes
- Frequency Response Functions
- Power Spectral Density
- Modal Participation Tables
- Normal Mode
 Animation
- Forced Vibration Animation

ADAMS/Vibration 12.0 offers:

Integration with vertical products

 Same look and functionalities for ADAMS/Standalone and ADAMS/Vertical Product

Create Vibratio	n Input Channel				Vibration Analysis 🔹	VibrationAnalysis_mhagx	
Input Channel Name	.h.Input_Cha	nnel_1			Operating Point	● Static ○ Assembly ○ Script	
Input Marker							
Translational C	Rotational				Impert Cattings	From Evisting Vikestian Australia	
Force Direction	Cocal	Θ×	1		Import Settings From Existing Vibration Analysis Forced Vibration Analysis Normal Mode Analysis		
	🔿 Global	ΟY			Input Channels	Output Channels	
	I	ΟZ			Input_Channel_mhagx	.h.Output_Channel_dz_hiravl .h.Output Channel dz hiravr	
Actuator Parameters			🖌 Create Vibration Outpu	t Channel		.h.Output_Channel_dz_hirahl .h.Output_Channel_dz_hirahr	
Swept Sine	Force Magnitude		Output Channel Name	.h.Output_Channel_1			
C Rotating Mass	Phase Angle (deg)		Output Function Type	Predefined			
O PSD		,	Output Marker		[] []		
O User			Global Component		Frequency Range (hz) Begin 1.0	Logarithmic Spacing of Steps	
			Displacement	 • Х О Ү О Z О Мад 	End 100.0		
1		~	: 1		Steps 200		
		<u>0</u> K		<u>OK</u> <u>Apply</u> <u>Cancel</u>	Reuse Existing State Matrix	Modal Energy Computation	
hanical							
amics							

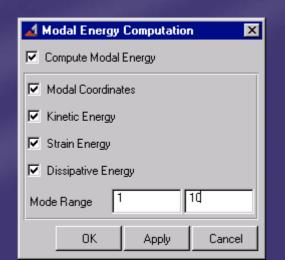
Mechanical Dynamics

The ADAMS/Vibration Solution

ADAMS/Vibration 12.0 offers:

- Integration with ADAMS/Insight
 - Dedicated dialog box to create objective macros for DOE - A/Insight

Create Vibration D	esign Objective Macro	×
Macro Name		
Return Value Variable		
Target Vibration Data	Frequency Response: 1 Input , 1 Output	•
Input Channel		1
Output Channel		
Value Type	⊙ Minimum O Maximum	
Frequency Range	All Frequencies C Specific Range	
	OK Apply Cancel	



Mechanical Dynamics

The ADAMS/Vibration Solution

ADAMS/Vibration 12.0 offers:

- Modal energy computation
 - Energy contribution of each model element in
 - HTML format

🛃 Modal Informa	ition									>
🔿 Modal Coordinates 🔿 Modal Participation 💿 Modal Energy										
Modal Energy Table for Analysis = VibrationAnalysis_mhagx_analysis Mode = 1									×	
	Header									
	Undamped Natural Damping Generalized Generalized Kinetic Frequency Ratio Mass Stiffness Energy									meae
35.4222 hz			0.0222564	1191.52 kg		0.0139252 newton/mm			0 newton-mm	
· · · · · · · · · · · · · · · · · · ·			Norma	alized Coordin	ates					
Name	X		Y	Z		RX		RY		RZ
hira	1	-0.0	0.0202775 0.0252359		-0.000103903 -0		-0.00	-0.000604037		0.00069695
hag_qt	-0.0836765	-0.0	0.0137778 -0.012442 7.114				884e-C	105	-6.98827e-C	
hag	-0.0805146	-0.0	0445398	-0.00352767	7.114	e-005	4.26	6884e-005 -6.98827		-6.98827e-C
hag_haldex	-0.0852386	0.00	0961762	0.00025908	7.114	e-005	4.26	4.26884e-005		-6.98827e-C
hag_st	-0.0852704	0.0	170063	0.00474011	7.114e-005 4.26884e-0			05	-6.98827e-C	
		Per	centane D	istrihution of S	train	Fnerav				 ▶
Mode 4					•	1				
File Format HTML Display Phase Values Write Table To File										
Asse Font Size 10 Close										

Conclusions

 ADAMS provides two approaches for system-level vibration analysis allow complete NVH insight early in the design process

- ADAMS allows to balance competing requirements for optimum NVH by integrating the vibration investigation in the development process
- ADAMS continuous product development guarantees a steadily improving solution for your NVH
 process

Mechanical Dynamics

