ADAMSを用いた宇宙システムのシミュレーション解析

能見 公博

香川大学 〒761-0396 香川県高松市林町2217-20 TEL: 087-864-2335 FAX: 087-864-2369 e-mail: <u>nohmi@eng.kagawa-u.ac.jp</u>

Masahiro NOHMI Kagawa University 2217-20, Hayashi-cho, Takamatsu-shi, Kagawa, Japan

1.はじめに

本発表では、機構解析ソフトADAMSを用いて行っ た、行っている宇宙システム解析を紹介する.過去の例 として、1997年に打ち上げられた技術試験衛星VII型・ 通称おりひめ・ひこぼしのトラス構造物遠隔操作実験に おいて、宇宙実験事前評価・検証を目的としてADAMS を利用した実績について報告する(航空宇宙技術研究 所において実施).また、提案する宇宙システムのシミュ レーション評価としてADAMSを用いているが、実例を 挙げて報告する.

2. ETS-VIIトラス構造物実験⁽¹⁾⁽²⁾⁽³⁾

2.1 ETS-VII実験概要

技術試験衛星7型(ETS-VII)は、ランデブードッキン グおよび宇宙ロボット実験を目的として、1997年11月に宇 宙開発事業団により打ち上げられた.航空宇宙技術研究 所では、宇宙ロボット実験の一環として、トラス構造物遠隔 操作実験を行った.トラスは軽量かつ収納性がよいため、 宇宙空間への運搬が比較的容易であり、大規模構造物と することができる.その宇宙空間における建築作業は、地 上から遠隔操作される宇宙ロボットにより行うことが望まれ ている.

ところで、ロボットの接触作業では、対象物およびロボッ ト自体の不具合を回避するため、力の発生に注意すること が重要である.とくに、時間遅れを伴う遠隔操作では、発生 力のモニタが数秒遅れるため、ロボット自体に過大力を回 避する機能が必要となる.ETS-VII 搭載ロボットアーム は、アーム先端に取り付けられたセンサーによる力フィード バック機能を有している.その機能により、地上から位置姿 勢指令を送信することによるコンプライアンス制御、力指令 を送信することによる力追従制御を用いることができる.と くにトラスのような部材の展開・組立作業時には不 具合が発生する可能性が大きく、過大力の発生はそ の大きな要因となる.このため、本実験において力 学解析を行うことは、非常に重要である. ADAMSは、とくに展開トラス操作に関して使用した. 図3に、展開トラスの構造、および展開手順を示す.ま ず、図中に示すロボットのアーム先端座標系、すなわ ち、展開時における操作点(GPF)に固定された座標系 を定義する.展開作業は、GPFをロボットアームにより 把持し、ロボットアームの先端を操作することにより行う. このとき、展開軌道は一自由度であり、各点のアーム先 端位置姿勢は一意に決定される.しかし、GPFはx軸回 りに回転できるため、実際には二自由度となる.

図1 ETS-VIIロボット実験概観図

図2 展開トラス軌道上実験

図3 展開トラス展開方法

2.2 ADAMSによる力学解析

展開作業においてアーム先端に作用する力(以降単 に先端力と呼ぶ)は、トラスヒンジ自由度方向成分とし て、ヒンジ部ばね力・摩擦力などにより発生する力(展開 力)、並進力と回転力の干渉により発生する力(干渉 力)、また、ヒンジ自由度方向成分以外の力(抗力)、が 挙げられる.ロボットアームの制御はアーム先端位置姿 勢に指令値を与えることができるが、今回の実験では直 線軌道動作(任意の二点間でアーム先端位置姿勢を時 間に比例増加させる)とし、設計展開軌道を直線分割し て指令値とし、コンプライアンス制御による展開作業を 行った.このような作業に関して、ADAMSを用いて、ト ラス展開時におけるアーム先端に作用する力について 調べた.図4にADAMSシミュレーションの様子を示す.

図4 ADAMSによる展開シミュレーション

まず,剛体・ヒンジより構成されるモデルを作成する. このモデルにおいて,GPFの軌道は一自由度に拘束さ れるため,モデル誤差・弾性変形・がたなどが含まれる 実験におけるアーム先端位置姿勢六成分を与えること は不可能である.そこで,アーム先端とGPFを六自由度 ばね・ダンパー要素により連結する.このばね・ダンパー 要素の反力を,アーム先端力と仮定する.すなわち,ば ね・ダンパー要素によりコンプライアンス制御が模擬され ていることとなる.

(1) 実験における展開力の評価

ここでは、実験における展開力を評価することを目的 とし、GPFはx軸回りに回転自由とする.すなわち、アー ム先端とGPFを連結するx軸回りのばね・ダンパー要素 をゼロとする.シミュレーション結果について、展開力が 作用する場合---,作用しない場合---,軌道上実験結 果について---,それぞれを図5 に示す.y・zに関し て、展開力が作用する場合は実験結果と定性的に一致 しており、作用しない場合では小さい.また、その他の 力は両者がほぼ一致している.これより、実験における 展開力の発生は、y・zに現れていることがわかる.ところ で、シミュレーションにおける展開力は、実験における先 端力をGPFに与え、ヒンジ自由度方向反力を求めること により推定している.この推定において、展開動作はア ーム先端位置姿勢ではなく、ヒンジを動かすことにより、 行っている.

図5 トラス展開力解析

(2) 過大力の発生要因

展開力は必要な力,干渉力・抗力は過大力である. 抗力はアーム先端位置姿勢が展開軌道から逸脱するために発生する.ここでは,その逸脱がない場合にも発生 する干渉力について調べる.ここで,力の六成分を全て 考慮するため,GPFx軸回りにもばね・ダンパー要素を 加える. そして, アーム先端位置姿勢を与えた場合----, 位置のみ与える場合----, 姿勢のみ与える場合---について, 先端力を図6に示す. この結果におけるy・z軸の並進力とx軸の回転力について, 位置姿勢を与える場合は, 位置のみまたは姿勢のみを与える場合に比べ非常に大きい. これより, y・z軸の並進力とx軸の回転力の間には干渉力が発生し, 過大力を発生する可能性があることがわかる.

図6 並進力・回転力の干渉解析

2.3 ADAMSによる遠隔操作手法評価

さらに,展開トラス実験では力追従制御を用いた方法に よる実験も行った.これは,地上から力指令値を送信し,ト ラスに一定方向の力を作用させることによる展開方法であ る.ADAMSでは,一定方向の力によりどの程度展開が可 能であるかを調べた.この結果に基づき,力指令値を複数 用意しておき,トラスの展開状態に応じて最適な力指令値 を送信し,操作を行った.

また,位置姿勢指令によるコンプライアンス制御を用い て,軌道上の状態をフィードバックして指令する方法による 実験も行った.この方法に関してもADAMSを用いた評価 を行ったが,通信時間遅れの問題が発生したが」,解析を 通信時間遅れごとに行うことにより解決した.

3. 宇宙キャスティング(4)

3.1 研究概要

宇宙キャスティングは、数mから数十mの比較的近距離のテザー伸展を想定した手法である.それは、大型である母船搭載マニピュレータを用いてテザーに連結される物体を投げ、その手先より伸展されているテザーの張

カ制御をマニピュレータ操作により行い,移動軌道修正 を行いながら目標地点に到達させる方法である.図7は キャスティングのイメージを示す.

図7 宇宙キャスティング

キャスティングでは、母船軌道上の自然外力、キャス ティング反力による母船の運動、テザーの伸縮・たわみ 運動、母船搭載マニピュレータの制御誤差、などが外乱 要因となる.母船が大型であること、テザー伸展距離が 短いこと、宇宙マニピュレータの制御手法は数多く研究 されていること、を考慮すると、これらの外乱要因の中で 第一に調べる必要があるものは、重力傾斜の影響であ ると考えられる.そこで、重力傾斜のキャスティングに対 する影響を明らかにすることを目的としたADAMSシミュ レーションを行った.

3.2 ADAMSによる解析

ADAMS上に作成したモデルを、図8に示す.ここで は、母船、テザーにより伸展される質量、対象物は全て 剛体と設定し、母船には二つ剛体により構成されるマニ ピュレータが搭載されている.マニピュレータ手先とテザ ー先端質量の間には、テザー張力に相当する並進力を 作用させることとする.すなわち、ここでテザーは、質 量、弾性、たわみを無視したものとして扱われる.また、 ADAMSの基準座標系は軌道上固定座標系とし、重力 および母船の軌道運動による遠心力は、それぞれ各要 素に作用するように設定した.

図8 ADAMSキャスティングモデル

シミュレーション結果を図9に示す.ここでは, テザー 先端質量を母船と同じ軌道上に, 50[m]離れて存在す る対象物に向かって投げる.s_gx, s_gyはテザー先端 質量の位置, s_ex, s_ey1は母船搭載マニピュレータ手 先位置, r_x, r_yは母船位置, d_x, d_yは対象物の位置 を表す.ここで, ---はテザー張力を作用させない場 合, ---はテザー張力を作用させてマニピュレータによ りテザー先端質量の軌道修正を行う場合を示す.s_gy のグラフより, 母船搭載マニピュレータによるテザー先端 質量の移動軌道修正制御の効果が確認できる.また, r_x, r_yのグラフより母船はマニピュレータによりテザー 先端質量を投げる反力により移動し始め, その後は運 動量保存則に従うことが分かる.

図9 キャスティング結果

4. テザー宇宙ロボット⁽⁵⁾⁽⁶⁾

4.1 研究概要

ロープ・ワイヤなどは、軽量、収納性の良さなどの利点を 備えており、さらに伸展・回収することができるため、先端 に連結されたロボットの空間移動において効果的に使用す ることができる.そこで、我々は、宇宙空間での利用を目的 としたテザー宇宙ロボットを提案している.それは、テザー 先端に宇宙ロボットを取り付けたシステムであり、宇宙ロボ ットによりさまざまなミッションが可能となることが期待でき る.

本研究では、このような弦ー剛体系で表現されるシステムについて、先端剛体系の姿勢制御時における挙動解析 を目的とする. 基本的な姿勢制御手法は、リアクションホイ ールによる姿勢制御,そして蓄積角運動量排出を目的とす る角運動量制御を用いる.また,制御を付加することによる システムの挙動変化を調べ,制御時における弦ー剛体系 システムの挙動メカニズムの解明を目指す.

4.2 ADAMSによる解析

図10に解析モデルを示す.設定された座標系の原点よ り弦が伸展されており、その先端に二つの剛体が取り付け られている.二つの剛体は回転関節により連結されてお り、一方は弦に連結され、もう一方はリアクションホイール が取り付けられている.リアクションホイールは取り付けられ た剛体の姿勢制御を行い、剛体間の関節トルク制御により リアクションホイールの角運動量を排出する.この角運動量 が大きくなることは、機能的な制限にも影響するため望まし くない.このモデルをADAMS上にて作成したものを図11 に示す.ここで問題となるのは弦のモデリングであるが、今 回は複数パートに分割し、回転関節により連結している.

図10 弦-剛体系解析モデル

図11 ADAMSによるモデル

図12 ADAMSによる弦下端剛体系

ADAMSによるシミュレーションを行った結果を,図13に 示す.ここで,Freeとは制御無しの場合,Wheelとはリアク ションホイールのみ駆動した場合,Fullとは剛体関節制御 も用いた場合を表す.これらの結果より,リアクションホイー ルにより剛体は姿勢制御されていること,そして剛体関節 角制御によりリアクションホイール角運動量は抑制されてい ることが分かる.また,弦の振動に関しては高周波成分が 現れており,たわみ振動が発生していることが分かる.

図 13 シミュレーション結果

5. 惑星ローバー搭載マニピュレータ(7)

5.1 研究概要

月・惑星探査計画においてローバーが注目され,着 陸・移動手法など,数多く研究されている.将来的に は,ローバー搭載ロボットアームによる作業も期待される が,微小重力下では,ロボットアームの動作反力により 車体が不安定となる可能性が大きい.このため,アーム 動作が車体にどのような影響を与えるかについて,作業 性評価解析を行うことは重要である.

5.2 ADAMSによる解析

ADAMSでは重力を設定することができ、その値は可 変であるため、さまざまな微小重力環境を模擬できる. ADAMS上に作成したモデルを図14に示す.

図14 ADAMSローバーモデル

図15 ローバー車輪のモデリング

本研究で取り扱うモデルにおいては、とくに便利な機能を二つ活用している.第一はContact force(図15参照)と呼ばれる機能であり、二次元の円とそれに垂直な 平面との接触力を発生させることができ、また接触点に おいて摩擦力を発生することができる.この機能は車輪 と地面の接触部に用いている.第二にMotion(図15参照)という位置・速度・加速度の入力機能である.この中 で,速度入力をロボットアームの関節動作に用いてい る.この機能は,強制的に数値を入力する機能であり, 理論的な関節速度制御が可能となる.制御に関しては Control tool boxと呼ばれる機能を用い,アーム動作を 実現している.この機能は簡単な制御アルゴリズムは実 現できるが,複雑なものはADAMS Controlというソフト を用い,制御開発ソフトとしてMATLAB/SIMLINKを併 用することが望ましい.

図16には,解析例の一例を示す.重力設定を微小としているため,ローバーに搭載されているアームを動作させることにより,前輪または後輪が浮いてしまう現象が見られる.

図16 ローバー運動解析例

6. おわりに

宇宙システムのシミュレーション評価としてADAMSを 用いている事例を紹介した.ETS-VIIトラス構造物遠隔 操作実験では,実宇宙システムを利用した実験の事前 検証として,また提案した宇宙システムに関して,制御 法の検証から動力学解析にまで利用している.

文 献

- K. Matsumoto, S. Wakabayashi, M. Nohmi, H. Ueno, T. Yoshida and Y. Fukase, "Teleoperation Control of ETS-VII Robot Arm for On-Orbit Truss Construction," 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Paper No. WEA21-3, ESTEC, Noordwijk, The Netherlands, June 1, 1999.
- 能見・松本・若林・吉田・上野,「ETS-VII 搭載ロボットアームによるトラス展開実験の力学解析」,第41回 自動制御連合講演会,pp.213-214,大分,1998 年11月20日.
- 能見・松本・若林、「ETS-VII 搭載トラスの力制御に よる展開シミュレーション」、第 42 回宇宙科学技術 連合講演会、論文 No. 2A6、東京、1998 年 10 月 29 日.
- M. Nohmi, "Trajectory Adjustment Control of Tethered Object During Space Casting Deployment," International Symposium on Artificial Intelligence, Robotics and Automation in Space, Paper No. AS005, Canadian Space Center, Montreal, Canada, June 2001.
- M. Nohmi, Y. Terumichi and K. Sogabe, "Tether Vibration Control by Manipulation of A Tethered Space Robot," in Proceedings of the 5th International Conference on Motion and Vibration Control, Sydney, pp. 299 - 304, Sydney, Australia, December 4-8, 2000.
- 6. 能見・曄道・曽我部,「弦-多剛体システムの連結点 操作による運動制御」,第43回自動制御連合講演 会,pp.51-52,松山,2000年11月16日-17日.
- 能見、「宇宙ローバー搭載ロボットアームの作業性解 析と ADAMS シミュレーション」、第 44 回宇宙科学 技術連合講演会、論文 No. 00-1C13、福岡、2000 年 10 月 15 日-17 日.