A Framework to Measure and Improve Your Virtual Prototyping Process

Michael Hoffmann, Brian Cheung, Douglas Peterson

A Framework to Measure and Improve Your Virtual Prototyping Process

- > Introduction
- > The Framework
- Industry Leaders
- Industry Trends
- Improving your Process

A brief questionaire

- In manufacturing
 - we constantly benchmark our capabilities
 - we know exactly duration of each assembly task and the associated costs
 - > we have total quality control
 - we have established a continuous improvement process

A brief questionaire

In virtual prototyping

YES NO

we constantly benchmark our capabilities

- \bigcirc
- we know exactly duration of each modeling task and the associated costs

> we have total quality control

we have established a continuous improvement process

- Virtual Prototyping has become mainstream
 - ➤ Isn't it time that we apply tools for quality control and constant improvement to the Virtual Prototyping Process

- Customers are asking for an objective way for benchmarking their Virtual Prototyping Process:
 - "How do you rate our Virtual Prototyping Process compared to industry leaders"

From Point Solutions to a Continuous Improvement Process

A Framework to Measure and Improve Your Virtual Prototyping Process

- > Introduction
- > The Framework
- > Industry Leaders
- >Industry Trends
- > Improving your Process

Capability Maturity Model (CMM)

- De facto standard for
 - Assessing, and
 - improving software processes
- Effective means for
 - > modeling,
 - defining, and
 - measuring the maturity
 - of the processes used by software professionals.
- Developed by Carnegie Mellon Software Engineering Institute

Capability Maturity Model

Reference: http://www.sei.cmu.edu/cmm/cmm.html

Capability Maturity Model

- Level 1 (Initial)
 - The software process is characterized as ad hoc, and occasionally even chaotic.
 - Few processes are defined, and success depends on individual effort and heroics.
- Level 5 (Optimizing)
 - Continuous process improvement is enabled by
 - quantitative feedback from the process and
 - from piloting innovative ideas and technologies.

Virtual Prototyping Maturity Model (VPMM)

- CMM adopted to the Virtual Prototyping Process by MSC.Software
- > Effective means for
 - > modeling,
 - > defining, and
 - measuring the maturity of

the processes used for virtual prototyping

VPMM

VPMM Components

Level 1: Initial

Product Troubleshooting

- > Few defined processes
- Usage within specific departments
- Analysts typical users
- Data is scarce

Level 2: Repeatable

Standardized Testing

- Basic requirements are tracked
- Usage across divisions
- Analysts and test engineers typical users
- Data is planned

Level 3: Defined

Product Validation

- Well documented processes
- Usage across the enterprise
- Analysts, designer and test engineers typical users
- Defined Data Process

Level 3: Defined

Virtual Product Sign-Off

"If you have not established a Virtual Product Sign-Off, you are not serious about Virtual Prototyping"

> Mike Racicot General Motors

Level 4: Managed

Target Cascading

Process measured and controlled

Usage across the enterprise and supply chain

Platform teams are typical users

Standardized data methods

Level 4: Managed

- Process metrics
 - Accuracy of predictions
 - > Directional, relative, absolute
 - Duration to build model
 - Duration to test model
 - Duration to change model
 - Duration to re-test model

Level 5: Optimized

Product Definition

- Continuous process improvement
- Global team
- Platform and suppliers
- Innovation-driven Insight

Virtual Prototyping Maturity Model

A Framework to Measure and Improve Your Virtual Prototyping Process

- > Introduction
- > The Framework
- Industry Leaders
- > Industry Trends
- > Improving your Process

VPMM Assessment

Industry Leaders

Handling

- Require set of full vehicle simulations for design sign-off
- Perform robustness analysis and cascading at least in some areas
- > Ride
 - Have a standardized virtual test process
 - Require some ride simulations for design sign-off

Case Study: Magna Steyr

Business: Magna Steyr, Car assembly

and engineering; powertrain

components

Challenge: Different prototypes used

for each development step

Solution: Modular, template-based

ADAMS/Car results in single virtual prototype

Value: Using single model results in

cost- and time-savings

"Magna Steyr uses ADAMS/Car, due to its particular advantages for solving tasks in the areas of:

- Elasto-kinematics and vehicle dynamics
- Cross-sectional forces as input data for subsequent fatigue life estimation
- NVH calculation"

Dr. Anton Riepl Magna Steyr

Case Study: International Truck

Business: Worldwide service and parts for

heavy- and medium-duty trucks

Challenge: Easily evaluate effect of

configuration changes on ride

quality

Solution: Using ADAMS/Car to establish

a centralized modeling library for ride quality prediction of new

trucks

Value: Identified efficient configuration

changes to optimize ride

"We can efficiently model a variety of vehicle configurations, accurately simulating the ride dynamics and involving the design community in the analysis process."

-- Dave Anderson Sr. Engineering Analyst

Case Study: BMW

Business: BMW, Automotive

manufacturer

Challenge: Full vehicle assembly

process takes too long

time

Solution: Customized system for

process automation

Value: 5 day process reduced to

less than 1 day

Case Study: Volkswagen

Body in White Model from VW

- 3.712 CWELD Elements
- 3.562 connecting two parts
- 150 connecting three parts
- Old Spot Weld Modeling VW New CWELD Element

Business: Volkswagen, Automotive

manufacturer

Challenge: Point to point connection of parts

requires time-consuming re-meshing

Solution: Enhance NASTRAN to automatically

connect non congruent meshes

Overall process reduced by 30% Value:

Case Study: Compute Systems

400% performance gain@ 1/3 the cost

"I recognized that Linux was the way to go... and that MSC.Software provided a stable, fully supported kernel."

A Framework to Measure and Improve Your Virtual Prototyping Process

- > Introduction
- > The Framework
- > Industry Leaders
- Industry Trends
- >Improving your Process

Industry Trends

- Front-loading Analysis
 - More simulation within the CAD-system
- Design Synthesis
- Single Simulation Data Model

Front-loading Analyis

Toyota's Front-Loaded Development Initiatives

Stages of Development Process

Design Synthesis

Single Source Model Building

Automation Vision

Overnight Build

A Framework to Measure and Improve Your Virtual Prototyping Process

- > Introduction
- > The Framework
- > Industry Leaders
- >Industry Trends
- Improving your Process

Where are you on the VPMM scale?

- If you give a simulation job to 10 engineers in your company, how many different answers will you get?
- Are Virtual Prototyping process metrics available and in use to measure and manage the process? What is your process capability today?
- Is your Virtual Prototyping time spend improving the design?
- Are the Virtual Prototyping goals and the corporate goals closely linked?
- Do warranty problems consistently reoccur on new product models? Do you involve Virtual Prototyping early to avoid this in the future?

Deployment Approach

Current Capability Analysis

Cascade VPMM metrics

- 1. Ratio of Virtual Sign off's to Hardware Sign off's
- 2. Number of Virtual Tests supporting sign off
- 3. Percent of active vehicle programs using Virtual sign off process
- 4.

Current Capability
Analysis

- Survey to
 - Measure metrics
 - Complete understanding of actual processes

Survey detailed metrics

■ Current VPMM■ Process■ Organization■ People□ Data

Target Capability
Planning

Determine VPMM improvement opportunities

4.

- Ratio of Virtual Sign off's of Hardware Sign Off's Create Virtual Sign off process
 Develop Additional Virtual Tests
- 2. Number of Virtual Tests supporting sign off Commonize Virtual Testing Tools
- 3. Percent of active vehicle programs using Virtual sign off process
 Distribute CAE tools, and train

Develop specific project plans to support VPMM improvements

Business
Case
Development

- Determine potential
 - VPMM improvement and
 - financial benefits

Implementation

Project Execution

Validation & Follow-up

- Confirm VPMM Metrics
 - Did we achieve the expected VPMM?

Let's Make Virtual Product Definition a Reality

