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In this lecture we will review and explain some of the basic concepts and
results on the numerical solution of differential-algebraic equation (DAE)
systems, with emphasis on the solution of mechanical systems. Recent
developments and ongoing work in DAE software will be discussed.



Outline

e Introduction to DAEs
e Mathematical structure
e Numerical methods

e Challenges for mechanical system simulation

e The DASSL family



General DAE System

0=F (t7 Y, yl)
e Mathematical structure is more complex than standard-form ODE
y' = f(ty)

° g—f, may be singular, and in this case it is not equivalent to ODE

e Simple and natural formulation for modeling many physical sys-
tems

e Requires special consideration for formulating problem and choos-
ing and implementing numerical methods



Multibody system

M(g)q" = f(g,4,t) + G (g)A

Example: Pendulum in Cartesian coordinates
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Numerical ODE Methods

0= F(t7 y7yl)

e Approximate y, ¥ by numerical ODE method

e Some methods may also make use of derivatives of F

Implicit Euler method

0= F (tn,yn,%)

Gear, (1971)

Solve by Newton iteration
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Many advantages for direct formulation:
simple, preserves sparsity, satisfies constraints

But, it doesn’t always work ...



Index and Simple DAEs

Index is a measure of the degree of singularity of the DAE system

Index One
y = g(t)

Index Two
Y1 = g(t)
Y2 = U

Index Three
y=g(t)
Y2 = Ui
Ys = Yy

e Solutions are completely determined by right hand side
e Initial values must be consistent with right hand side
e Solution may be less continuous than input

e Higher index DAE may have hidden algebraic constraints



Index of Nonlinear DAE Systems

F(t,y,y)=0

global index: number of differentiations needed to solve for g/
uniquely in terms of y and ¢

F(t,y,y) = 0
dF
__t / 1 — O
dt(,y,y,y)
d™F

Syt y ™) = 0

e For semi-explicit systems, it is often possible to differentiate only
the constraints



Example-Index for Pendulum
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332 + y2 . L2 — 0
¢ Differentiate constraint once
zx'+yy' =0
Substitute for =, 1/
zu+yv =20
e Differentiate constraint again
zu' +yv' +u? + 02 =0
Substitute for v/, v’
A+ 12X —yg+ut+0vi=0
Simplify using the original constraint
L2\ —yg+u?+v2=0

e Differentiate constraint again and solve for \’
N = 25(vg — 22uz — 20(Ay — g))

Thus, the index is three.



Nonlinear DAE Systems and Derivative Array

Derivative Array
Ft,y,y) = 0
d

__Ft / 174 — 0
o ty,v,y")

dmF T
—mr b9,y =0

Existence and Uniqueness

Rheinboldt and Rabier, (1990) use a variant of this idea to prove
existence and uniqueness, for index-one systems if F € C? and gg
constant rank, and also for higher-index systems, given more continuity
and certain matrices constant rank.

General DAE Solvers
ODE-methods can be very effective for certain DAE systems, but they
are not applicable to general higher-index systems.

e Construct general DAE solvers using the derivative array via au-
tomatic differentiation

e Develop methods and theory for large classes of DAEs arising
commonly in applications



Structural Forms

Semi-explicit index-1

T = f (may)
0 = g(z,9)
Qg nonsingular
Oy
Hessenberg index-2
z = f(z,y)
0 = g(z)
g—z% nonsingular
Hessenberg index-3
' = F(z,y,2)
y = Gz,y)
0 = H(y)
0H 0G OF ,
nonsingular

Jy O0x 0z
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Numerical Methods

What can happen?

Consider simple index-3 system

1 = g(t)
Yo = yi
Y3 = Y

Implicit Euler method

Yint1 = 9(tnt1)

Y+l —Yin /
Yontl = 5 = g'(tns1)
n+1
Yin+1—Y1n\ _ (Y1n"¥Yin-1
y Yon+1 —Y2n ( P+l ) — ( A )
3,n+1 — -
P Pt

OK for constant stepsizes, but blows up as h,4 1 — 0

Work has focused on:

e Order conditions for linear multistep and Runge-Kutta for index-
one and higher-index Hessenberg systems

e Stability, including effect of problem formulation on numerical
stability
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Order Results for Linear Multistep Methods

Semi-explicit index-1

T = f (‘,Ea Y, t)
0 = g(x,y,t) 99 nonsingular
7d) ay
Linear multistep method
_Zk: QjTn—j = h i bjf(wn—jv yn—jatn~j)
J=0 Jj=0

0 = 9(33n, ynatn)

Converges with same order, stability as for ODE

Fully-implicit index-1

F(t,y,y) =0

multistep methods converge if they satisfy the strict stability condition
(excludes methods such as trapezoid). The methods must satisfy
an additional set of order conditions to attain order > 2. The

additional order conditions are satisfied by BDF.
Madrz & Griepentrog, (1986)
Létstedt & Petzold, (1986)
e This convergence result for BDF underlies the index-one BDF DAE
~ codes LSODI (Hindmarsh & Painter (1981)) and DASSL (Pet-
zold (1982)) and DASRT (Petzold (1984)), DASPK (Brown,

Hindmarsh, Petzold (1991))
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Order Results for BDF

Index-2 Variable-stepsize BDF(k)(k < 7) converges globally to O(hF)
if starting values are sufficiently accurate

Litstedt & Petzold, (1984)
Brenan & Engquist, (1984)
Gear, Gupta, Leimkuhler, (1985)

Index-3 Fixed-stepsize BDF (k)(k < 7) converges globally to O(h*)
after k+1 steps if starting values are sufficiently accurate

Lotstedt & Petzold, (1984)
Brenan & Engquist, (1984)

e Convergence follows an initial boundary layer of nonconvergence.
Convergence in a distributional sense has been shown by Camp-

bell, (1989).

e Higher-index systems via BDF studied by Clark (1987), Gear &
Keiper, (1987)

e Many practical problems for higher-index systems: stability re-
strictions, ill-conditioning, determining initial conditions, stepsize
control, etc.

13



Runge-Kutta Methods

F(t,y,y)=0

M-stage implicit Runge-Kutta

M
F(tn_1+cz-h,yn_1+h2az-jY}',Yz-') =0 1=1,2,...,.M
J=1

M /
Yn = Yn—1 + h Z:lbzy;

Methods must satisfy a strict stability condition.

Semi-explicit index-1 If am; = bj, or if we force constraints to
be satisfied after the last stage, order and convergence same as ODEs.
Otherwise, there is an additional set of order conditions

Petzold, (1986)
Hairer, Lubich, Roche, (1987)

Higher-index For higher-index systems, the method must satisfy

additional order conditions. (Related to B-convergence theory for stiff
ODEs.)

Brenan & Petzold, (1988)
Hairer,Lubich, Roche, (1989)
Kverno (1988)

Half-explicit methods for nonstiff systems |
Hairer, Lubich, Roche, (1989)
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Runge-Kutta Codes

e Radau 5 (3-stage Radau IA order 5), semi-explicit index 1,2,3.

Hairer,Lubich, Roche, (1989)

e LIMEX extrapolation for semi-implicit index 1

Deuflhard, Hairer, Zugck, (1985)

e MEXX extrapolation based on half-explicit midpoint for Hessen-
berg index-2 mechanical systems, also includes stiff option

Lubich, (1991)
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Computational Challenges for Mechanical Sys-
tems

M(q)q" = f(t,q,q)+G (g)X
0 = g(q)

|

e Problem formulation and numerical stability
e Efficiency/parallelization

e High-frequency oscillations

e Rank-deficient constraints

e Discontinuities

e Delays
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The DASSL Family

DASSL (Petzold, (1982))
Ft,y,y) = 0
y(to) = o
e Backward differentiation formulas (BDF)

1 k
F(tn+1a Yn+1, T z%)aiyn-l-l—i) =0
1=

e Variable-stepsize, variable-order (1-5) fixed-leading coefficient

e Modified Newton iteration for solving linear system at each time
step (forms and factorizes Jacobian only when necessary), user-
supplied or finite-difference Jacobian

e LINPACK dense and banded linear solvers

e Must be started with a consistent set of initial conditions (New ini-
tialization software for index-1 will be released soon, Brown, Hindmarsh
and Petzold, 1995, higher-indez under development)

e Cannot solve higher-index DAEs without modification

e Available on internet via netlib:

mail netlib@ornl.gov
Subject: send ddassl from ode
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Solving Higher Index Systems Directly

e For index > 2, extensive modification or reformulation to lower
index is necessary

e For index-2 Hessenberg DAE, BDF converges but error estimates
in DASSL are not designed to handle this class of problems without
modification

' = f(t,x) — B(t,z)y
0 =g (ta iB)
modify the error test so that it does not include errors in y

e Newton convergence test may be modified so that it computes
errors in hy

e Matrix is ill-conditioned. May be helpful to scale the constraints,
i.e. solve h7lg(t,z) =0
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Extensions to DASSL

Root-finding DASRT
e Stop at root of user-prescribed function g(t, y)
e Useful for problems with discontinuities

— Use root-finder to locate discontinuity

— Restart after discontinuity with new function

e Available on internet via netlib
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DASPK

Large-scale systems of DAESs
F(t,y,9) =0

y(to) = yo
(Brown, Hindmarsh & Petzold, (1992))

e Uses BDF methods of DASSL for time-stepping
e Nonlinear system at each step solved by inexact Newton

e Linear system at each Newton iteration solved by preconditioned
GMRES.

e Matrix-vector product is approximated by finite-difference

F(t,y+ov,y’ + ov) — F(t,y,y)
(o)

Av =~
where A4 = %—I; + %%15
e T'wo versions of parallel DASPK (Maier and Petzold, (1993))
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DAE Sensitivity Analysis

e DAE system
F(t,y,y,p) =0, y(0)=y(p)
e Sensitivity analysis computes dy/dp; for each parameter p;

e Useful in parameter estimation, optimization, model simplification,
experimental design, and process sensitivity

e New solution approach is efficient and easy to use
— Sensitivity system solved simultaneously with the original DAE
system, with little added cost

— Block-diagonal approximation of the system Jacobian is efficient
and achieves 2-step quadratic convergence

— Directional difference approximation saves storage, requires no
added user information

e Three codes have been written and are available

— DASSLSO, DASPKSO
— SENSD
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Design Optimization and Optimal Control for
DAE Systems

find u(t) and z(t) for tp <t <t
to minimize J = /tf)f L(z(t), u(t), t)dt + V (z(t;))
subject to  x(tp) is given
F(&,2(8), 2'(8), u(t)) =0
g(t,z(t),u(t)) = 0

e Bolza-type objective function
e Differential-algebraic equations (DAEs)
‘o Constraints

e Includes parameter estimation

Software package DASOPT (under development, Petzold, Rosen, Park, Gill,
Murray, Saunders)

e Large-scale nonlinear inequality-constrained optimization (SQP)

e Solution and sensitivity analysis for large-scale differential-algebraic
(DAE) systems

e Optimization and control of the DAE system

e Parallel methods and software
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