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ABSTRACT

The stability of motion of a parachuting payload, descending and rotating simultaneously, is affected
by physical and design parameters. This paper presents an analysis of the behavior of this type of a
system and its sensitivity to several parameters. The results from the ADAMS complete model have a
good correlation with test results. A simplified analytic model does not represent the correct stability
criteria, since it does not include the whole effects of the system.

INTRODUCTION

The stability of a parachuting payload, descending and rotating simultaneously,
depends on several parameters - physical, geometrical and aerodynamicals. An
example of the importance of a stable motion is in a Data Collection System (DCS)
where the stability affects the area coverage efficiency. An analysis was performed,
using ADAMS, to simulate this behavior. The analysis results were compared to
experimental data. Furthermore, an analytic solution of a reduced system emphasized
its insufficient accuracy and the need for a complete and accurate model.

The following topics will be considered in the paper:

- Description of the actual parts (payload, two arms and a parachute), physical and
geometrical data (mass, center of mass and moments of inertia) and external loads.
The aerodynamic coefficients were measured in a wind tunnel.

- The influence of moments of inertia, imbalance, tolerances and gaps on the stability of
motion.

- The main results of the simulation, including comparison with experimental results.

- The results and limitations of the simple analytic model in comparison with the
complete numerical model.

The major conclusions from the analysis are:

- Moment of inertia and gaps between the arms affect the stability range.

- Imbalance in the specified range has no effect on the stability.

MODEL DESCRIPTION

The system consists of four bodies as described in Figure 1:

- Generalized parachute

- Long Arm

- Short Arm

- Rotor (hanged payload).

The system has 9 to 12 Degrees of Freedom (DOF), depending upon the scenario to be
tested. Nine DOF are inherent to the model, allocated as follows:

- Six DOF of the generalized parachute (three translationals and three rotationals
DOF).

- One angular DOF of pitch angle between generalized parachute and long arm.

- One angular DOF of pitch angle between long arm and short arm.

- One angular DOF of pitch angle between short arm and rotor.



Three additional angular DOF, perpendicular to the three pitch DOF, represent gaps
between the parts due to dimensional tolerances. The gaps, of about 0.5 [degs] each,
enable these DOF to act in their limited range by applying impact forces between
parts, when striking the stoppers. The physical and geometrical data were calculated
and the aerodynamic coefficients were measured in wind tunnel experiments.
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Figure 1 : General view of the model

COORDINATE SYSTEMS

Three major coordinate systems are to used in the model, as described in Figure 2.

- Global (inertial) coordinate system (X, Yg, Zg). The tip of the generalized
parachute coincides with the global origin at time=0 of the analysis (point A, Figure 2).

- Local coordinate system (Xg, Yg, Zg) of the rotor defined at the point of connection
between the short arm and the rotor (point B, Figure 2). Xg is parallel to the
longitudinal axis of the rotor, Zy axis is parallel to the pitch DOF between the short
arm and the rotor and Y axis is perpendicular to both axes.

- Local coordinate system (Xp, Yp, Zp) of the parachute defined at the point of
connection between the long arm and the parachute (point C, Figure 2). Zp is parallel
to the longitudinal axis of the parachute, Xp axis is parallel to the pitch DOF between
the long arm and the parachute and Yp axis is perpendicular to both axes.



Figure 2 : Coordinate systems and external loads

AERODYNAMIC LOADS

The aerodynamic loads on the generalized parachute are calculated in respect to its
lower point (point C, Figure 2) and are defined by the following equations:

Fzp=Q*S*Cyp Drag force
Frp=Q*S*Cyp*Bp Elevation force
(1) Fp=Q*S*Cxp *&p Elevation force

Txe = Q*S*D*{Cn*Bp+Cmo*[D*(dBp/dt)/2/Vp]+Co} Pitch torque
Typ = Q*S*D*{ Cp*dp+Cumo*[D*(ddp/dt)/2/Vp]} Pitch torque
Tzp = Q*S*D*[Cy +Cro*(D*1/2/Vp)] Rolling torque

where Q=0.5*p* V3, p - air density, Vp - resultant velocity measured at center of
pressure, S - equivalent cross area, D - equivalent diameter, n - rolling speed.

Cxp, Cyp, Czp, Cu, Cmq, Co, Cr and Cyq are the aerodynamic coefficients measured in a
wind tunnel (index q refers to damping coefficients).

The angle of attack is defined by the following relations between the components of

the parachute velocity Vp, measured at the pressure center and defined in parachute
reference axes (Xp, Yp, Zp):

Bp = ARCTAN (Vyp/ Vzp) angle of attack in (Yp, Zp) plane
(2
Op = ARCSIN (Vxp / Vp) angle of attack in (resultant Vpdirection, Xp) plane

where d(angle)/dt - time derivative of the angle of attack.



The aerodynamic loads on the rotor are calculated in respect to its center of mass
(point D, Figure 2) and are defined by the following expressions:

Fr=Q*S*Cxr Drag force
(3) Fr=Q*S*Cw Elevation force
Tzr = Q*S*D*{Czr +Cro*[D*(dBr/dt)/2/Vr]}  Pitch torque

where Q=0.5*p* Vg2, Vi - velocity measured at center of mass. Cxz, Cyr, Czr, Cro
are the aerodynamic coefficients measured in a wind tunnel. The angle of attack Bg is
defined by the following relation between the components of Vg, measured at its
center of mass and defined in the rotor reference axes (Xgr, Yr, Zgr). The other
component of the angle of attack is neglected.

(4) Br=ARCTAN (Vyr/ Vxr) angle of attack in (Yg, Xg) plane
SCENARIOS for ANALYSIS

The analysis included evaluation of several cases of system stability sensitivity. It was
observed from preliminary measurements that the system is sensitive to variations in
moments of inertia. The principal moments of inertia are close to spherical
configuration as a result of design constraints. The purpose of the analysis is to define
the conditions for stable motion, where the stability is defined as small pitch
oscillations of the rotor. The following cases have been tested and are described
further on:

- Nominal case without the gap DOF and with balanced rotor.

- Effect of principal moment of inertia ratios on motion stability.

- Effect of dynamic unbalance , up to 50 [kg-mm?], on motion stability.

- Effect of the extra gap DOF , of about 0.5[degs], on motion stability.

RESULTS

The major results of the various simulations are shown in Table 1 and Figures 3 and 4.
Figure 3 shows the pitch angle, which is a measure of stability, for a stable and
unstable cases. The unstable oscillations in Figure 3 represent a moments of inertia
ratio of B/C = 0.87. A, B, C are principal moments of inertia around X3, Y3 and Z;
axes respectively, Figure 5. The critical value for stable oscillations is B/C = 0.89.
Smaller values of this ratio cause divergence of the oscillations. Figure 4 describes the
trace of motion on ground for a stable case.

Adding imbalance of up to 50 [kg-mm?], does not change the stability criteria.

The additional DOF that represent mechanical tolerances of about 0.5 [degs], improve
the stable range of moments of inertia ratio to B/C = 0.7 and even less.
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Figure 3 : Pitch angle oscillations as a function
of moment of inertia ratios
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Figure 4 : Trace of a stable motion




COMPARISON to an ANALYTIC MODEL

Due to the large difference between the rotor and parachute masses, it is assumed that
the rotor is the dominant part that affects and controls the stability of the system.
Therefore an analytic model of the spinning rotor at constant speed n, hung on a
universal joint (two DOF) was established, in order to compare its behavior to the
complete model. A scheme of the model and coordinate systems are shown in Figure 5.
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y

Figure 5 : Analytic Model and coordinate system

X, Y, Z - Inertial coordinate system,

X3, Y3, Z3 - Coordinate system attached to the rotor,

n - constant angular velocity around Z axis, [rad / sec].

y - angle between the two arms of the universal joint around the rotated Y axis,
¢ - Angle between the Rotor and the universal joint around Xj axis.

A set of two equations of motion represent the relationships between angular

displacements around the DOF, mass properties of the rotor and the external torques
acting on its center of mass.

D’A-(B-C)*n*tm*g*L  -n*D*(A+B-C) J m [Tj

n* D *(A+B-C) D’B-(A-C)*n*+m*g*L

©)

\U} T

where D denotes for d/dt; A, B, C are principal moments of inertia around X3, Y3 and
Z; axes respectively; m - Rotor mass; L - distance of center of mass from the universal
joint; g - acceleration of gravity; y, ¢ - the DOF; T;, T, - external torques acting
around axes X3, Y3 respectively.

The specific solutions for ¢ and y are



Q= Tl/[(B-C)*nz-m*g*L]
©)
v = -To/[(A-C)*n*-m*g*L]

Certain relations between A, B, C, n, m and L may cause instability. Solving the
homogeneous equations yield a 4™ order polynomial equation

(M a*p*+ay*p’+a;=0

where a;=A*B
a, = (-C?-2*A*B+A*C+B*C)*n* - m*g*L *(A+B)
a;= [(B-C)*n’- m*g*L] * [(A-C)*n’- m*g*L]
p - natural frequencies

The stability range of Eq. (7) under the design constraint of A>C>B is

®) 1.096>(A/C)>1

B/C)<1
The stability criteria depends on the ratio between the large to middle moments of
inertia. These results are different to those of the complete model where the stability is
sensitive to the ratio between the small to middle moments of inertia.

CONCLUSIONS

The main conclusions of the analysis presented in this study are as follows:

- The stability of a parachuting system depends on the ratios of moments of inertia.

- Dynamic unbalance of the rotor in the specified range does not affect the stability of
motion.

- Adding purposely more angular degrees of freedom by taking into account the gaps
and manufacturing tolerances, increases the stability range by a significant amount,
from B/C =0.89 to 0.7 and even less.

- The analytic model is not accurate enough, although it includes most of the system’s
mass, since it does not include the complete number of DOF, non-linear effects as gap
and impact phenomena and solution of large displacements. Instead, it consists of two
angular DOF with a solution that defines a different criteria of instability. Changing
the complete model so that the angular DOF are replaced by a universal DOF, results
in a similar stability criteria as derived by the analytic model.

- The results achieved by the complete numerical model are in good agreement with
the experimental results.



	
	
	
	
	
	
	
	

