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Abstract: this paper describes the results of a feasibility study aiming at the design of an ADAMS-
based simulation program for the main rotor of the AGUSTA A109¢ helicopter. Due to the
complexity of the dynamics and aerodynamics of the helicopter rotor (blade flexibility, unsteady
aerodynamic loading. non-uniform and time-varying wake) extensive use has been made of ADAMS's

features such as FEA modelling. user-written subroutines and linear systems simulation; an ad hoc
subroutine (CONSUB) for simulation management and control has also been developed.

[. INTRODUCTION

In recent years, a great deal of activity has been devoted in the helicopter community
to the research aiming at improving the performance and quality of the existing and
future aircraft; in particular, the so-called "jet smooth", low vibration helicopter is the
target of most manufacturers.

The major source of vibrations in helicopters is the main rotor; therefore a reduction in
the vibratory level can be achieved by two different strategies:

1. by modifying the design of existing rotors, after a careful design optimization has
been performed.

2. by making use of active control techniques in order to reduce the effect of rotor
vibratory loads on the fuselage and, as a consequence, on the passengers and the
on-board equipment.

Both strategies imply a deep understanding of the rotor as a dynamic system and the
availability of an advanced simulation tool in order to carry out the required
optimization or control system design. The latter strategy (i.e., active control of
vibrations) is currently a subject of research at the Politecnico di Milano, in
cooperation with the Italian helicopter manufacturer AGUSTA SpA (see, e.g., [1]-[3]);
one of the objectives of such a research activity is the development of a suitable
simulation program, to be applied in the design and testing of active control systems
for helicopter rotors.

As will be made clearer in the following Sections, the multibody approach to the
analysis of mechanical systems has been recently recognised as a promising paradigm
for the helicopter industry ([4], [5]); this paper will therefore describe the results of a
feasibility study aiming at the design of an ADAMS-based simulation program for the
dynamics and aerodynamics of the main rotor of the AGUSTA A109c¢ helicopter.
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The paper is organised as follows: after a short introduction describing the helicopter
rotor and its major dynamic and aerodynamic features (Section II), the first part of the
paper (Sections III-VI) will focus on the modelling issues related to the "building
blocks" the rotor model is based on, namely:

¢ the mechanical model of the control system and the hub.
e the structural model of the blades.

o the model of the aerodynamic loads acting on the blades and the associated
integration scheme.

e the aerodynamic model of the roror induced flow, i.e., of the wake generated by the
motion of the blades with respect to the free air-stream, which is of major
importance in the analysis of rotor dynamics.

For each of these building blocks the selected mathematical models will be presented
and their assumptions will be discussed.

The second part of the paper (Sections VII-X) will then describe the ADAMS
implementation of the aforementioned building blocks (providing the reader with more
details about the use of FEA modelling, user-written subroutines and linear systems
simulation) and the development of an ad hoc subroutine (CONSUB) for simulation
management and control.

II. ROTOR DYNAMICS AND AERODYNAMICS

The main rotor of a helicopter has the function of developing the forces and moments
required to fly and control the aircraft; in a rotor of the articulated type, as the one this
paper deals with, each blade is attached to the rotor's central hub by a set of hinges
which allow it to rotate

e out of the rotor disk plane (up and down, flapping motion)
e in the disk plane (back and forth, lagging motion)
o around its longitudinal axis (pitching or feathering motion).

The hub rotates at an (almost) constant angular rate Q (typically Q ranges from 20 to
50 rad/sec, depending on the particular aircraft), thanks to the torque provided by one
or more engines located in the fuselage of the aircraft.

The pilot can control the rotor by varying the pitch angle of each blade by means of an
actuator called swash-plate; by commanding the blade pitch angle one can indirectly
control the amplitude and orientation of the loads the rotor applies to the fuselage, as
these are (roughly) proportional to such an angle.
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From the modelling point of view, the rotor can be considered as being constituted by
four separate subsystems or blocks; this decomposition is represented in Fig. 1, which
shows a functional block diagram of a helicopter rotor:
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Fig. 1. Block diagram of helicopter rotor dynamics and aerodynamics

The figure puts into evidence the interactions between dynamics and aerodynamics,
which is typical of helicopter rotors: the control inputs influence directly the
aerodynamic loads acting on the blade, which, in turn, act as forcing inputs for the
blade dynamics (both rigid body and flexibility modes) and perturb the distribution of
the airflow around the rotor; the loop is closed by taking into account the effects of
blade motion (and elastic deformations) and induced flow on the aerodynamic
behaviour of the blade's lifting surface.

The following Sections will be devoted to a discussion of the major modelling issues
concerning each of the "building blocks" of Fig. 1; the interested reader can find a
more detailed presentation of the full mathematical model in [6].

III. CONTROL SYSTEM AND ROTOR HUB

a) Rotor control system
A schematic representation of the rotor control system is given in Fig. 2:
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Fig. 2. Rotor blade control system



the pilot can act on the rotor by commanding a vertical displacement (collective
control) or a longitudinal/lateral tilt (lateral and longitudinal cyclic control,
respectively) of the non-rotating swash-plate; such displacements are transferred, via
the linkage kinematics, to the blade pitch horn, as a time-varying pitch command of the
form

8(t)=9,+ 3, sin(Q) + 3,, cos(d). (1)

It is possible to prove (see, e.g., [7]) that by the application of such kind of controls
the pilot can influence the motion of the blades and thus modify the spatial orientation
of the rotor thrust, (T), i.e., of the total aerodynamic force generated by the rotor, as
shown in Fig. 3:

Fig. 3. Rotor thrust and tip-path plane

It is therefore of great importance for a rotor model to accurately describe the
kinematics of the control system. This also implies that the model should account in
some way for the flexibility of the control system itself (in particular w.r.t. the blade
pitch links), as it is subject to large periodic loads coming from the blades. Such a
flexibility plays an important role in determining the dynamic characteristics of the
rotor; unfortunately, it is extremely difficult to determine an exact analytical value for
the control system flexibility, so that it constitutes one of the most critical model
parameters, which should be accurately tuned during the model validation phase.

b) Rotor hub
As was mentioned in the previous Section, each blade is attached to the rotor's central
hub by a set of hinges, as in Fig. 4.
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Fig. 4. Rotor blade attachmment: hinges arrangement

The presence of hinges instead of a rigid attachment is motivated by stress relief at the
root of the blade, while the reason for the hinge offset from the hub centre of rotation
is to enable the rotor to transmit moments as well as forces to the fuselage. As a matter
of fact, hub moments bring an important contribution to the helicopter's handling
qualities: as a matter of fact the flapping hinge offset provides a very good measure of
the manoeuvrability of an articulated helicopter.

It is of particular relevance to mention that, while the blade pitching and flapping
motions are characterized by a satisfactory level of aerodynamic damping, the blade
lagging motion is very lightly damped: this is why each blade attachment is provided
with a hydraulic damper, with the function of stabilizing the blade lagging motion (see

Fig. 5).
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Fig. 5. Blade lag damper

The blade lag damper is in turn modelled by its force-velocity characteristic function,
which is usually non-linear, of the form depicted in Fig. 6:
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Fig. 6. Lag damper characteristic law

The control system, hub and blade attachments have been modelled in ADAMS as a set
of rigid bodies; the swash plate has not been explicitly included in the model, although
its addition would not imply any major modification but the inclusion of a few
additional parts. The ADAMS implementation of the model for the control system and
rotor hub will be presented in detail in Section VII; however it should be clear from the
previous description that modelling of the hub and control system is extremely simple
in ADAMS, as these components can be naturally described as a set of rigid bodies.

IV. BLADE STRUCTURAL DYNAMICS

The blade is the mechanical part of the rotor which requires the greatest care in the
modelling process: rotor blades are very light, slender structural elements (Fig. 7),
subject to a distributed and time-varying external loading and characterized by non-
uniform structural and inertial properties (see Fig. 8); therefore flexibility (both in
bending and torsion) cannot be neglected, especially if one is interested in analyzing the
vibratory (i.e., high frequency) response of the system.
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Fig. 7. Typical rotor blade section
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Fig. 8. Tvpical out-of-plane stiffness and mass distribution for a rotor blade



A full mathematical model for the structural dynamics of the blade is given by a set of
three partial differential equations (PDEs), one for in-plane bending, one for out-of-
plane bending and one for torsion, with the appropriate boundary conditions for the
hub attachment (see, e.g., [8] for a thorough treatment of this subject).

As a first approximation, one could simplify the analysis by assuming that the three
PDE:s are uncoupled and then resort to the classical results of engineering beam theory
for torsion and simple bending (although slightly modified to account for the effects of
rotation). This approach, leading to approximate models of the blade, has been
followed in the past and is extensively documented in the literature ([7], [9]):
unfortunately, due to the complexity of their structure, modern composite rotor blades
do not normally satisfy such assumptions, so that it is necessary to consider the
structural problem in the general case, for coupled bending and torsional deformations.

Flexibility is handled as usual through discretization, i.e., by representing the solution
of the system equations as a set of time-dependent coordinates multiplied by
appropriate space functions. The classical approach to the solution of the blade
equations, which is still used by many manufacturers, is the modal analysis approach:
as is well known, this method is characterized by its mathematical elegance and
somehow “natural” derivation, in particular for the case of beam vibrations; however it
has a few drawbacks which are of major importance for the case of helicopter rotor
dynamics. The modal approach, for example, cannot account for geometric non-
linearities (large rotations and deflections). Furthermore, when considering the analysis
of a rotating structure, the mode shapes can only be determined w.r.t the nominal value
of the angular rate, thus neglecting the (possibly relevant) effect of perturbations of the
angular rate due to such causes as gusts or manoeuvres.

In view of these considerations, although new tools for treating modal flexibility in
ADAMS have recently become available, ([10]), it has been decided to model the rotor
blade by the discrete flexible body approach first introduced by Ryan ([11]) and
implemented in the ADAMS/FEA module ([12]). As is well known, this method uses no
assumed modal functions, but achieves discretization by substituting the flexible body
with a number of rigid sub-bodies connected together by massless compliance
elements; each rigid body is characterized in term of concentrated mass and inertia
properties, while the compliance elements are described in term of stiffness matrices,
which can be determined by a finite element analysis.

The starting point for the hybrid FE/MSA modelling process is therefore a finite element
model of the flexible element to be discretized. A NASTRAN model of the rotor blade
has been provided to us by Agusta: in this model, the blade is discretized using 42
BEAM elements to characterize its stiffness properties, while an identical number of
concentrated masses (both translational and rotational) has been used to approximate
the distributed inertial properties. This representation, however, is far too detailed to
be directly imported in ADAMS, as this would imply the generation of 42 new parts for
each blade in the model (i.e., a total of 4*42=168 parts, being the A109¢ a four-bladed
helicopter).



In order to simplify the FE model, an intermediate step of stiffness condensation and
mass lumping has been necessary: a more detailed account of this procedure, as well as
of the validation and implementation of the simplified structural model will be given in
Section VIIIL

V. AERODYNAMIC LOADS

As was briefly mentioned in the previous Section, rotor blades are subject to a
distributed, time-varying loading, which is mainly of aerodynamic origin; this Section
will describe the mathematical model which has been used for the calculation of the
aerodynamic loads acting on each blade element; Section IX will provide more details
on the implementation of this model in the form of ADAMS user written subroutines as
well as on the integration scheme which has been adopted in order to determine the
total forces and moments acting on each blade.

The model is based on classical /ifting line theory, the major assumption of such a
theory is that the aerodynamic loads (lift, drag and pitching moment) acting on the
generic blade (wing) section are determined only by the local airflow, which, in turn, is
due to:

the overall motion of the aircraft

the rotation of the blade

the rigid body motion and the elastic deformations of the blade

the rotor induced flow

[

By summing the contributions of each of these velocities in the local reference frame
of a given, generic, blade section, one can then determine the aerodynamic incidence a
(see Fig. 9):

Fig. 9. Determination of section forces and moments (direct flow)

In order to determine the section loads, the classical expressions for their steady
components can be used:

lift: AL =% pcvi(C )




drag: AD =’ pcv?Cy (3)
pitching moment: M="%pc?viC 4)

where p is the air density, c is the blade chord, v is the modulus of the resultant section
velocity and C,, Cq4, C; are non-dimensional coefficients representing the airfoil
aerodynamic properties. Such coefficients are, in turn, non-linear functions of a and v;
they are obtained by linear interpolation over three look-up tables based on wind-
tunnel test data.

Unlike the case of fixed wing aircraft, in helicopter rotors it is not uncommon for a
blade section to meet reverse flow conditions, i.e., situations when the chordwise
component of the local velocity is negative; in such a case, (Fig. 10), one needs to
modify the above given expressions, in order to account for the change of sign in the
aerodynamic loads. Furthermore, while lifting line theory requires the direct flow local
velocities to be evaluated at three quarters of the blade section chord, reverse flow
conditions require the value of the local velocities at the first quarter chord of the
section ([7]); this effect has been accounted for in the model.

Fig. 10. Determination of section forces and moments (reverse flow)

Remark

Expression (4) for the section pitching moment needs further work before it can be
applied in simulations. This is because such an expression provides only the mean
(steady) value of the pitching moment and does not account for the pitch rate of the
section, which is nonzero due to the periodicity of the pilot commands (see (1)). As
the dependence of the pitching moment on the section pitch rate is the only source of
damping for the blade’s pitching dynamics, it is mandatory to modify expression (4) in
order to account for this effect. This can be achieved by resorting to unsteady airfoil
theory ([7]) and retaining in the expression for the pitching moment the relevant pitch
damping term; the section moment then becomes:

M=%pc?viC - 1/161tpc3vmsx (5)

where @sx is the pitching angular rate.d]
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VI. ROTOR INDUCED FLOW

It has been mentioned in the previous Section that the induced flow plays an important
role in the determination of the section aerodynamic incidence and, as a consequence,
of the section aerodynamic loads. Nowadays a large variety of induced flow models is
available in the helicopter literature (see, e.g., [13]); two representative models have
been included in the simulation program: the Glauert model and the Peters-He model.
The former is a classical, simple, quasi-steady representation of the rotor inflow, while
the latter is a recently developed ([14], [15]) dynamic model, much more sophisticated
but also more expensive from the computational point of view. The choice between the
two models is left to the user, according to his needs and his requirements for accuracy
and simulation time.

a) The Glauert model

This model prescribes an algebraic relationship between the rotor thrust and the mean
value of the induced velocity; such a relationship is only valid in the case of vertical
flight, but it has been heuristically generalized to the more common situation of
forward flight. In this case, the distribution of the induced velocity is assumed to be
linear over the rotor disk, i.e., the induced velocity v, is expressed in the following
form:

v,(x,p)=v_(1+ Kxcos(y)) 6)

where x and v are respectively the radial and azimuthal coordinates over the rotor disk
and K is a coefficient which depends on the considered flight condition.

The mean value of the induced velocity (v,,) is obtained by solving the following
algebraic equation:

v, +2sen(a)Wv )} +Vv, ) -U, =0 @)
where o is the rotor disk incidence (see Fig. 11), V is the free stream velocity and
5 T
U, =—.
4nRp

Fig. 11. Rotor induced velocity: Glauert model
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This model combines a great simplicity with a good accuracy for low-frequency
applications (i.e., rotor performance studies), but it is not adequate to the analysis of
high frequency characteristics of rotor response. For this kind of application, a more
accurate model is required.

Remark

Strictly speaking, the quantities involved in this model are values averaged over one
rotor revolution; from the implementation point of view, this time-averaging could be
obtained by low-pass filtering the instantaneous values of T. However, this filtering
would only change the high frequency behaviour of the model, which is anyway
beyond the scope of the model itself. This choice significantly simplifies the
implementation, which only requires a variable (to store the value of v, to be used in
aerodynamic load computations) and an iterative (Newton-Raphson) procedure,
performed by the VARSUB subroutine to solve the 4th order algebraic equation (7).0

b) The Peters-He model

This model is based on a straightforward application of mass and momentum
conservation laws to the airflow across the rotor surface: as in Section IV, the
problem is that of solving a set of PDEs, with the associated boundary conditions

([14]).

Under a few restrictive assumptions it can be proved that the PDEs associated to the
aforementioned conservation laws can be solved over the rotor disk by a modal
expansion approach: the (unknown) distribution of induced velocity over the disk is
expanded in a Fourier series over the rotor azimuth y and in series of Legendre
polynomials over the radial coordinate.

Therefore, a finite set of time-dependent modal coefficients ({a,’}, {,B j’}, Jj=1,.., nand

r=1,.., m, with n, m selected by the user) is sufficient for the determination of the
velocity distribution.

The modal coefficients can be determined as the state of a linear dynamic system of the
form:

{djr} - _[M]-I[Lc]—l{ajr} +%[M]—l{rnmc}

(8} =Anr [T {8, )+ 51017, )

®)
where [ M), [LF],[L°] are matrices which depend on the considered flight condition and
{z',,’”‘}, {r,,""} are integrals of the thrust distribution over the rotor disk, weighted with

the assumed expansion mode shapes.
The induced velocity distribution can be reconstituted by weighted sums of the modal

coefficients {a j’}, {,B }’} with the respective disk mode shapes:
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w(v,y,t) = Z 8, ( v)[a]’(t)cos(m w)+p, (¢)sen(m y/)]

r=0,1...

J=Er+lr+3.. (9)

Unlike the Glauert model, the Peters-He model does not prescribe a fixed induced
velocity distribution and is therefore much more accurate in describing the complexity
of the rotor wake induced flow; however this increased accuracy is to be paid in terms
of computational effort, as will be discussed in Section X.

Remark

Although more accurate, the Peters-He inflow model is only valid in the forward flight
condition, since its first principle equations assume that the induced velocity is small
when compared with the free-stream velocity (this is necessary to ensure the linearity
of the model equations and therefore allow their modal expansion (8)). For this reason,
the model is not directly applicable in the hovering case; it is anyway possible, as
suggested in [14], to use it as a perturbation model in the neighbourhood of the
average value of induced velocity (usually significantly high in hovering flight) as
provided by the Glauert model.l)

VII. CONTROL SYSTEM AND ROTOR HUB: MODEL IMPLEMENTATION

a) ADAMS implementation of the control system

As was described in Section III, the N blade pitch angles (N being the number of
blades) clearly provide a set of degrees of freedom which could be used to influence
the rotor response; although only three degrees of freedom are actually used by the
pilot to control the rotor (see (1)), many automatic control algorithms might require
the use of the complete set of DOFs, as could be achieved by the use of a hydraulic
actuator on each blade.

In Section III it was suggested that the links and the swash plate could be implemented
as ADAMS parts, but this option was considered unnecessarily complicated, for the
following reasons:

e it is possible to derive a simple yet sufficiently accurate analytical relation between
the three control variables (collective pitch, longitudinal and lateral cyclic pitch) and
the lower end position of each blade pitch link in the following terms:

Az=b8(?),
where b is a geometry-dependent constant and 6 is the blade pitch command.

¢ as was mentioned in Section III, the flexibility of the control system is an important
part of the model. However most of the elastic properties of the control system are
not easily available, therefore it is necessary to introduce an approximate
description of its structural characteristics, i.e., to use an equivalent elasticity, as
will be described shortly.



e one of the goals of the simulation program is to provide a framework to test active
control algorithms for vibration reduction: to this purpose, a modelling scheme
which leaves available all N degrees of freedom is by far preferable, due to its more
general applicability. ‘

The implemented model simulates the action of each link on the corresponding blade
by means of an SFORCE statement, linearly dependent on the distance d(t) between two
markers which represent the ends of the pitch link. However, due to the absence of the
swash plate, the actual length of the link is given by

I()=d(t)-b3 (1) =)+, (10)

where g(t) represents the elastic deformation of the pitch link. It is then straightforward
to introduce in the SFORCE expression the linear dependence on g(t) with a suitable
elastic constant K.

This simple scheme makes it possible to :

¢ include in the model the main structural characteristics of the control system.

e properly describe the position of the upper end of the pitch link, which will depend
on the full blade motion, thus automatically taking into account the important
effects of flapping and lagging on the actual pitch angle.

e implement the pitch control 6 of each blade as an ADAMS variable, thus leaving
available all the N degrees of freedom (although they can, of course, include a term
depending on the collective and cyclic pitch commands, as if the swash plate were
present).

It should finally be noted that in the case of explicit modelling of the swash plate the
implementation would become more involved: as a matter of fact, if one wants to
impose a motion to be computed on line by a MOTSUB subroutine (as is the case for
control algorithms), the subroutine should also provide the first and second derivatives
of the displacements. On the contrary, the use of variable g(t) also simplifies the
introduction of a damping term in the SFORCE, by means of ADAMS’s DIFF statement,
such a damping term has proved indispensable, mainly for numerical reasons.

b) Stability and trimming

Although the implementation of the control system is relatively short in the ADAMS
model file, it is not surprising that it requires a special care due to its physical
relevance.

Specifically, two problems must be solved.

The first one is related to the choice of the elastic constant X, as well as of the
damping coefficient: in fact these parameters greatly influence the blade’s torsional
dynamics as regards respectively the first mode of vibration and its stability.

A simplified analytical model for coupled flapping and pitching motion of the blade
(see [9]) has allowed the study of the collocation of its poles, in order to eventually set




K, and the damping coefficient to values ensuring both stability and matching of the
experimental value for the first torsional frequency. Some fine tuning has then been
performed on the more comprehensive simulation program.

The second problem, namely trimming, is that of finding such values of the three pilot
commands as to ensure the desired constant speed, steady state, forward flight
condition. In the simulation program, the fuselage is absent, so that the flight condition
is represented by a marker and a variable, describing, respectively, the direction and
the amplitude of the velocity vector v; therefore the trimming procedure aims at setting
the triple 3, 8,., 3,, and v to consistent values, in order to obtain realistic simulation
results, particularly for the blade periodic motion. Also in this case, a simplified (low
frequency) model of the rotor was used, in order to predict and to invert the
dependency

v=f(4).

Finally, the user of the simulation program is left the possibility to choose the desired
flight condition; as a matter of fact, the ADAMS model file contains only the statements
which are independent of the selected flight condition, as well as of all the other user-
defined parameters (like, e.g., the order of the modal expansion for the induced
velocity distribution); the program takes care of updating the ADAMS model file
according to the user’s needs (see also Section X); this feature has been implemented
by the CONSUB subroutine.

VIII. BLADE STRUCTURE: MODEL IMPLEMENTATION

As already mentioned in Section IV, the blade structural properties are described by a
NASTRAN finite element model, and must be included in the program in order to insure
that the model will reproduce at least the vibratory modes of the blade whose natural
frequencies fall in the range of interest. Moreover, for the case of a helicopter rotor
blade, it is particularly important to consider such non linear effects as (in order of
importance):

o the presence of a relevant centrifugal force, having a stiffening effect on blade
bending

o the blade rotation around its feathering axis (see the equations of motion of the
blade as derived in [8])

e the presence of Coriolis forces.

Under this respect, the multibody approach implemented in ADAMS is particularly
attractive, allowing at the same time:

e to represent the structural properties of the blade in a way which is very similar to
the original FE formulation, the only difference being the implicit constraint on the
inertial matrix (which must be equivalent to a set of concentrated masses)



e to eliminate any a priori assumption (notably constant angular velocity Q) in the
generation of the dynamic equations of motion, thus preserving the non linear
effects in full generality.

The second point presents the obvious drawback of an increased computational load, if
compared to FE; in order to compensate for this, the possibility to proceed to a
superelement reduction of the reference NASTRAN model was analyzed, with the aim of
reducing the number of degrees of freedom to be represented in the ADAMS model.
Since, as already stated, the reduced order model must still be able to predict
accurately the first modes of vibration, the following steps have been taken for its
determination (see, e.g., [12] and [16]):

¢ determine one possible choice of the internal nodes, and compute the corresponding
stiffness condensation (using NASTRAN, see [17])

e determine the lumped mass representation corresponding to a suitable re-grouping
of the concentrated masses (both described by CONM2 cards); this has been done by
importing in MATLAB the data contained in the GRID and CONM2 cards present in the
NASTRAN data deck and using MATLAB functions for mass condensation developed
to this purpose

e compute the reduced order model eigenvalues and compare them with the ones of
the reference model, using a boundary condition resembling the one the blade is
subjected to in the actual full rotor model.

The first two steps correspond to the determination of a coarser-grain discrete model
by assembling the basic components of the reference FE model, and they are therefore
partially subjective. However, provided that the extensions and inertias of the
condensed elements are chosen as similar as possible, the only really influential
parameter is the number of elements,.

Moreover, the third point provides an objective evaluation criterion for the
performance of the reduced order model.

Of course, these models must be eventually implemented in ADAMS, hence the choice
of the lumped mass method for the inertia matrix condensation; it should also be
remembered that the motion of each rigid body in the ADAMS model will be defined by
the DOFs of one of the master nodes, therefore the inertia condensation should
provide centers of mass as close as possible to such nodes (in order to be physically
significant).

In the ADAMS model, the flexible blades have been represented by nine rigid bodies, for
a total of 54 DOFs in each blade; as the data in Table 1 clearly indicate, this choice
sacrificed very little accuracy in the frequency band of interest (that is, at least up to
the first torsion-dominated mode, indicated with T1 in the table), allowing at the same
time considerable computational savings. Current work is aiming at a further
simplification of the blade structural model.




mode NASTRAN MODEL ADAMS MODEL rel. err.

(42 elements) (9 parts) (%)

F1 6.097 6.063 0.57
F2 19.90 19.53 1.85
L1 36.74 36.51 0.64
F3 38.21 37.43 2.04
T1 58.71 58.52 0.34
67.57 64.48 4.57

99.77 94.00 5.78

113.8 111.3 2.23

124.3 120.4 3.12

Table 1. Natural firequencies (hz) for the first nine inodes of a hinged, non-rotating blade.

Since this reduced order model was created with NASTRAN, it has been almost
straightforward to convert it to an ADAMS model, by using the modules NASUNI and
UNIADM, although version 7.0 of such modules does not properly handle BEAM cards,
so that some manual intervention turned out to be necessary.

As a result, each blade is constituted by nine rigid bodies, whose main characteristics
are their inertia, their center of mass markers and the master node markers; every
couple of adjacent bodies reciprocally interact by means of an NFORCE statement
(attached to the corresponding master nodes), which accounts for the elastic properties
of the blade.

Remark

A rigid blade model is also supplied in the simulation program; this is only to take
advantage of the inherently higher simulation speed, for the cases when high frequency
(4Q and multiples) accuracy is not required. This model is by far more.efficient from
the computational point of view and proves very useful for first order analysis.0

IX. AERODYNAMIC LOADS: MODEL IMPLEMENTATION

In this Section, the computation and the application of the aerodynamic forces will be
explained; the expressions used to determine the loads per unit length have already
been discussed in Section V; the value of the induced velocity will be here assumed as
known wherever necessary.

Three main points may be identified:
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¢ discretization of the distributed aerodynamic loads

¢ representation of the relevant geometric and aerodynamic properties of the blade in
the ADAMS model

¢ numerical integration of the spanwise loading distribution

The first point deals with the necessity of identifying a finite number of significant
characteristics of the load distribution to be used as the model inputs: clearly, they
must be supplied by the method used to discretize the equation of motion. In our case
the most accurate choice would be the one suggested by the finite element analysis,
i.e., a weighted integral of the section loads to be applied to the corresponding master
node as an equivalent concentrated load.

Unfortunately this approach presents two difficulties:

e it is not very well suited to the ADAMS MSA approach, since the weight functions
depend on more information than the one contained in the NFORCES

e it increases the computational load, due to the higher degree of interaction between
the parts composing the blade, since each integration interval extends on more than
one part

So it was considered more reasonable to be coherent with the rigid body

decomposition scheme, which ADAMS would anyway use to compute the inertial

forces; this means that the usual resultant/moment decomposition has been employed

(equivalently stated, the weight functions are constant/linear in the integration

interval).

In order to compute these equivalent load values the following information is therefore
needed:

o areference frame for each section, in order to:
1. decompose vectors
2. attach the resulting forces (GFORCE statement)
3. identify the blade chord direction
e the airfoil tables (N23012)
¢ the velocity vector v
e radial coordinate and chord of each blade section
In terms of the underlying ADAMS model, the description of an integration interval has

required the introduction of a set of markers, named “aero_bnn”, and the associated
GFORCE statements, sharing a common id number bnn, b being the blade index and nn
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the segment index. Two vectors of constants (“chord” and “abscissas”) were also
necessary, to supply the blade chord values and radial abscissas computed at the
boundary points of the integration interval.

It follows from the above that in each blade part one or more of these intervals need to
be defined, so that no interval will be shared by more than one part. As a matter of
fact, to increase the number of integrals for each part is only useful to locally refine the
numerical integration (explained below), and was not considered necessary in the (nine
part) flexible blade model; this option was anyway used for the rigid blade model to
increase the integration accuracy near the blade tip.

The computation is then performed by a GFOSUB subroutine, relying on ADAMS utility
subroutines to obtain the necessary velocities and angular displacements relative to the
velocity vector v at the points of interest, in order to compute aerodynamic loads (see
Section IV); the aerodynamic coefficients account for static stall and compressibility
effects due to Mach number changes; the original, experimental, look-up tables,
supplied by AGUSTA, have been spline-interpolated in order to increase the number of
available points, thus reducing run-time (linear) interpolation inaccuracies.

For faster convergence, the numerical integration over each interval is based on the
well-known Gaussian formulas; their accuracy can be controlled by the user in terms of
the number of points to be used (such a parameter can be selected in the preliminary
phase of the simulation, handled by the CONSUB subroutine).

X. ROTOR INDUCED FLOW: MODEL IMPLEMENTATION

The implementation of the Peters-He inflow model requires, at each integration step
(and depending on the selected values of parameters m and n, see Section VI):

e the determination of the {t,,”"}, {r,,""} integrals of the rotor thrust distribution

o the integration of the set (8) of linear differential equations
e the reconstitution (by modal summation) of the induced velocity distribution

The second point is easily implemented in ADAMS using the LSE statement, taking
advantage of the linearity of the ODEs; the dynamic matrix of the linear system must
be computed during the preliminary phase (by the CONSUB procedure) on the basis of
the selected flight condition, along with the reference steady state values T and v for
the rotor thrust and mean induced velocity (obtained using the Glauert model, see the
Remark in Section VI).

As regards the third point, it is left to the GFOSUB procedure to select the points of
interest for the calculation of v, (as required by the Gaussian formulas, see Section IX)
and to perform the series summation using the LSE state variables as expansion
coefficients, during the computation of the aerodynamic loads.

The efficient computation of the input vector {r,™},{r,™}has on the contrary
required particular attention: the main obstacle is given by the fact that each
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component of the input vector depends on the whole distribution of the aerodynamic
load over the rotor disk; such a distribution, in its turn, depends on almost the entire
mechanical state of the rotor (see Section IX).

Since ADAMS implicit numerical integration techniques require the computation of the
jacobian matrix, such a wide dependence will require to repeat the determination of the
components of the input vector for a significant number of times.

This is clearly unavoidable, as the computation of the jacobian matrix is the very heart
of the stiff integrators; however one can take advantage of the fact that the input
components differ only in the weighting functions, while they share the most
demanding part of the computation, which is that of determining the load distribution.
Unfortunately, the implementation of this scheme is not quite straightforward using the
LSE statement, given the fact that the solver will expect the VARSUB subroutine to
compute one input component at a time, while it would be more natural to compute
the whole input vector in a single call.

This problem has been worked around by allocating a static array where the whole
input vector is stored following its computation at the very first call, to be read at each
subsequent call. There are two potential shortcomings in this solution:

o this approach relies heavily on an assumption on the order followed by the solver
for the computation of the jacobian matrix; this order is not documented and might
be modified in future versions

e a large amount of memory must be allocated in order to store the results, because
the above mentioned computation is performed row-wise instead of column-wise,
that is two successive calls to the VARSUB procedure will differ in the rotor disk
state rather than in the input component to be computed

In spite of these potential problems, the overall computational savings have been found
to be so significant to make the adoption of the described scheme extremely useful.

XI. CONCLUDING REMARKS

A feasibility study has been performed in order to design an ADAMS-based simulation
program for the main rotor dynamics and aerodynamics of the AGUSTA A109c
helicopter.

The complexity of the phenomena under investigation (rotor blade flexibility, unsteady
aerodynamic loading, non-uniform and time-varying wake) have required extensive use
of ADAMS's features such as FEA modelling, user-written subroutines and linear systems
simulation and the development of an ad hoc subroutine (CONSUB) for simulation
management and control.

Current work aims at incresing the computational efficiency of the simulation code; the
correlation of the model outputs with experimental flight test data will also be
performed during 1995.
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