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In this article we discuss the relation between the two ADAMS functions DZ(3, j, k)
and VZ(i, j, k) and by extension between DX and VX, and DY and VY respectively.
We also illustrate the importance of reference frames while deriving the time deriva-
tives of various vector quantities. Finally we conclude the note with an example
where the results derived here are useful. We first develop some notation.

Notation

The following notation is used throughout this article.
e 4&PB stands for the angular velocity of the reference frame B with respect to
reference frame A. In general a left superscript stands for a reference frame
relative to which a quantity is measured or an operation is performed.

e O stands for the inertial reference frame (Ground).

o If ¢ is the ID of a marker, I is assumed to be the corresponding reference frame
with unit vectors (X;, ¥;, Z;) respectively.

Some Useful Formulae

The following standard results of vector algebra and kinematics are used through-
out this short paper. B

Given the vector quantities a, b and ¢, and the reference frames A, B and C, we
have:

axb=-bxa (1)
) a-[bxec = b-[exal = ¢-[axDb] (2)
* A{DB_A‘DC_'_CQB (3)



e The time derivative of a vector quantity depends on the reference frame in which
the differentiation is performed. In fact
Ad Bq
—a=—a
dt dt
On the other hand, the time derivative of a scalar quantity is independent of the
reference frame.

+ 408 x a (4)

Time Derivative of DZ(3, j, k)

With the above preliminaries, let us derive the time derivative of the ADAMS
function DZ(i, j, k). By definition

DZ(i,j,k) = [fi—T] 2 ®)
VZ(i,j.k) = [Vi— V] 2 (6)

where T; is the position vector of the ¢ marker (expressed in some convenient reference
frame) and ¥; is the velocity of the origin of the ¢ marker with respect to the inertial
reference frame. Let us choose some arbitrary reference frame A to obtain the time
derivative of the scalar DZ. Using Eq.(5) we get

d

L )
= [%(f‘i - fj)] “&k + (F; — 1) - [Z—f ik] (7)

Using Eq.(4), we can express these derivatives with respect to the inertial reference
frame O as

d . °d,_  _ A-O . 1= = .
aDZ(z,j, k) = ——t—(r,- —1;) + 0% x (F; — F;)| - 2k
Od
+ (F;—1y)- [E 7 + 40 x 2k] (8)
Note that since z; is a unit vector of K,
Kq
’r zr =0 9)

and application of Eq.(4) with A =0 and B = K gives

2d 2, = P0F x % (10)
dt



Using the triple product relation given in Eq.(2) and the property of vector cross
products given in Eq.(1) we see that the terms containing 4@° in Eq.(8) cancel out.
Hence we get

d .. °d,_ _ . - _ s

EDZ(Z,], k) = {-d—t(ri - rj)] 2+ (T — T;) - [OwK X zk] (11)
The RHSs of Eqgs.(7) and (11) clearly show that the time derivative of a scalar (DZ
in this case) is invariant with respect to the reference frame in which it is obtained.
Comparing the first term on the RHS of Eq.(11) to Eq.(6) we note that they are the
same. Thus,

4DZ(i,j,k) = VZ(5,5, k) + (Fi — F5) - [00% x ] (12)

The above equation clearly shows that the derivative of DZ(3, j, k) is in general
not equal to VZ(z, j, k). They are equal when the second term on the RHS of Eq.(12)
is zero, which happens under one of the following circumstances.

1. °o¥ = 0. This in turn is true if K = O, i.e., the reference marker is on ground;
or if the reference frame K is translating (not necessarily at constant velocity)
without rotating with respect to the ground.

2. 1; =Ty, i.e., the 2 and the j markers are coincident.

3. [O(I)K X fzk] = 0 This is true if the reference frame K is rotating about its own
z-axis.

4. (r; — 1) - [O(DK X ik] = 0. This occurs if we can write

O&-)K

(Ti—T)=az;+p ] (13)

where o and B are any two real numbers and |°w¥| is the magnitude of the
vector °@X. In other words (F; — F;) lies in the plane containing Z; and °wX.

Example Application

Now we illustrate an application of the above result through an example. The
ADAMS function IMPACT has the syntax

IMPACT (z,%,x1,k, €, Cnaz, d) , (14)

where z is the penetration distance and 7 is the corresponding speed and the remain-
ing variables specify various parameters. Most of the time we use DZ(t, j, k) for
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and VZ(3, j, k) for £ and we have seen that this may lead to incorrect results. Thus, if
we want to use V Z for speed, we must make sure that one of the conditions specified
above holds true.

1. Note that in the IMPACT expression, if we use DZ(i, j, k) with the reference
marker k equal to either ¢ or j, the first condition stated above may not be valid
since °@! or °@’ may not be zero.

2. The second condition can be satisfied by placing the 7 and the j markers on two
dummy parts (if necessary), one on each colliding part, and constraining the
dummy parts in such a way that they always coincide with the point of impact.

3. As already mentioned, the third condition is true if the reference frame K is
rotating about its own z axis, which may not be true in general.

4. The fourth condition can be satisfied by aligning the z-axis of the reference
marker along the line connecting the two points coming under contact.

If none of the above four conditions are satisfied, we must compute the actual
speed & as given by Eq.(12). In ADAMS we can implement it as follows. Using
Egs.(1) and (2) we can rewrite Eq.(12) as

D20, 5,k) = V203,53, 8) ~ [°0% x (5~ %) -2 (15)

Note that if we express the vector quantities “@* and (F; — T;) in terms of the unit
vectors (Xg, ¥k, 2x) of reference frame K, we just need to evaluate the 2, component
of the cross product term in Eq.(15) since we are dotting it with z,. We can write
this as

O x (£ — £5)] -2k = [P0 - %] *[(®: — £5) - 58] - [C0% - Ju] #[(F: — 5) - %] (16)
In terms of ADAMS functions this can be written as
[°@% x (7 — £5)] - 2% = WX(k, 0, k) DY (3, j, k) — WY (k, 0,k) * DX (i, j, k) (17)

Using Eqgs.(15) and (17) we get

d
D23, k) = VZ(i, 5, k)~WX (k,0,k)xDY (i, j, k)+ WY (k,0, k)x DX i, j, k) (18)

Conclusions

Through this short article we illustrated the relation between the ADAMS func-
tions DZ and VZ. We also pointed out the significance of reference frames while
finding the time derivatives of vectors. Finally, note that the same type of results
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apply to DX and VX, and DY and VY respectively. We can summarize the results
as follows.

4DX (3,5, k) = VX(i, 5, k) — WY (k,0,k) x DZ(i, j, k) + WZ(k, 0,k) x DY (3, j, k)

4 DY (3,5, k) = VY (i, 5,k) — WZ(k, 0, k) DX (i, j, k) + WX (k, 0, k) x DZ(i, j, k)

4DZ(i,j, k) = VZ(3,j,k) — WX (k,0,k) * DY (4, j, k) + WY (k,0,k) * DX (i, j, k)

References

[1] ADAMS Reference Manual, Mechanical Dynamics Inc., Ann Arbor, 1992.
[2] Kane T.R. and Levinson D.A., Dynamics , McGraw-Hill, New York, 1985.



	
	
	
	
	

