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ABSTRACT

This paper presents the use of flexible multi-body dynamics within ADAMS for simulating
nonlinear system dynamic events. The nonlinear dynamic system being modeled in this
case is a friction-induced dynamic instability. The ADAMS model consists of rigid and
flexible bodies. The flexible body is represented by an assumed set of vibration modes
which are obtained from a finite element modal analysis of the flexible body. The modal
representation of the flexible body is then included in the ADAMS model through GSE
statements which couple the rigid body dynamics equations to those of the flexible body
dynamics equations. Simulation results of the friction-induced dynamic instability are
presented. The simulation results confirm the hypothesis that friction-induced dynamic
instability occurs when two vibration modes that are coupled by friction forces coalesce in
their natural frequencies. The numerical results are in good agreement with observations
from tests.

Introduction

This paper presents preliminary results on the use of flexible body dynamics with ADAMS
in simulating nonlinear system dynamics events in which component flexibility plays an
important role. One such event is the case of self-sustaining oscillations of a flexible (i.e.,
not infinitely rigid) axle/leaf spring assembly, where such oscillations are induced by
friction between the brake shoes and the brake drum. The mechanism giving rise to self-
sustaining oscillations is the dynamic coupling of the brake shoe radial motion (also
referred to as the normal oscillation) and of the spring wrap up mode or axle torsion
mode of the brake-axle-suspension system (also referred to as the tangential oscillation).
Friction between the brake shoes and the brake drum causes coupling between the normal
oscillation and the tangential oscillation, which in turn results in modal (frequency)
coalescence under certain conditions. When modal coalescence occurs, a vibration mode
momentarily becomes unstable and this vibration mode eventually becomes a stable limit
cycle! The stable limit cycle is characterized by large amplitude, self-sustaining
oscillations.



The approach taken in the present modeling effort is to perform time-domain, nonlinear
dynamic simulations of the brake application process and to determine under what
conditions dynamic instability will most likely occur. Several options are available for
modeling the brake-axle-suspension system. These range from simple rigid body models to
fully nonlinear finite element models with friction-contact elements. During the initial
stages of this study, a simple ADAMS model of the brake-axle-suspension system
consisting of rigid lumped masses was developed. This simple model was useful in the
sense that it enhanced the understanding of the modal coupling mechanism that drives the
dynamic instability. However, the multi-rigid-body model was not able to reproduce some
of the observations in the test, and this shortcoming was due to the existence of complex
vibration modes that were not captured by the multi-rigid-body model. At this stage of the
modeling process, two options were available for improving the brake system model,
namely: 1) developing a fully nonlinear finite element model with friction-contact
elements; or 2) creating a multi-body dynamics model consisting of rigid and flexible
bodies. In general, the proper modeling approach depends on the type of problem being
considered. For instance, if we consider the instability problem that is governed by the
vibration modes of the brake shoe and the brake drum, a fully nonlinear finite element
analysis is required to simulate the event. An analysis of this type would involve lengthy
execution times and would require tremendous amounts of data storage. On the other
hand, if we consider the instability problem that is governed by the flexibility of the axle
and the leaf spring suspension, the brake components can be treated as rigid bodies and a
flexible multi-body dynamics approach can be utilized to simulate the nonlinear system
dynamic event. In contrast with nonlinear finite element analysis, a flexible multi-body
dynamic analysis in ADAMS involves execution times which are orders of magnitude less
than nonlinear finite element analysis and requires much less data storage. Hence, in
simulating dynamic instability in which the flexibility of the axle/leaf spring subassembly
plays an important role, the most cost-effective approach is to use muiti-body dynamics in
modeling the brake-axle-suspension as a system of rigid and flexible bodies.

Model Description

A schematic drawing of a three-dimensional ADAMS model of an S-cam brake assembly
is shown in Figure 1. The brake assembly consists of the following parts modeled as rigid
bodies: 1) brake spider; 2) S-cam and cam shaft; 3) slack adjuster; 4) push rod; 5) air
chamber; 6) leading shoe and roller; 7) trailing shoe and roller; and 8) brake drum. These
parts are connected by mechanical constraints or by internal forces, the magnitudes of
which are dependent on the system configuration (in other words, the dynamic system is
autonomous, except for the prescribed nominal air chamber pressure).

The rotation of the brake shoes with respect to the brake spider is related to the rotation
of the S-cam through the cam-to-shoe roller contact which is modeled by point-to-curve
(PTCV) constraints. Moreover, the shoe rollers are allowed to lift-off the cam. The
interaction of the drum and brake shoes are modeled by discrete forces along the lining of
each brake shoe. Each contact force is treated as a unilateral, nonlinear spring and damper
so that the normal force between the drum and the shoe at a particular interface point can



only be a compressive force or zero. The tangential or friction force between the drum and
the shoe 1s a function of the normal force and the relative velocity between the drum and -
the shoe, evaluated at the contact point. Specifically, the friction force is the product of
the normal force and the coefficient of kinetic friction, and the direction of the friction
force is determined by the tangential velocity of the drum relative to the shoe.

The air pressure force between the air chamber and the push rod consists of the nominal
(specified) air pressure and the feedback air pressure coming from the air spring action.
The air pressure force is a nonlinear function of the displacement of the push rod, and this
nonlinearity is crucial in determining the operating conditions at which dynamic instability
is most likely to occur. The remaining forces are modeled as linear springs and dampers.

Two brake assemblies as described above are attached to the ends of a front axle. The
front axle also supports the air chamber through the air chamber bracket, and the front
axle is attached to the vehicle by leaf springs. The front axle, air chamber brackets and the
leaf springs are modeled as a subassembly of flexible bodies. This subassembly of flexible
bodies is combined with the multi-rigid-body dynamics model by employing an assumed
modes method (AMM) of formulation for the dynamics of flexible bodies.? The assumed
modes are obtained from a modal analysis of a finite element model of the axle-bracket-
leaf spring subassembly as shown in Figure 2. The modal flexibility representation of the
subassembly is then included in the ADAMS model by means of GSE statements which
combine the rigid body dynamics equations with those of the flexible body dynamics
equations. The resulting system of equations form a set of nonlinear equations wherein the
rigid body coordinates are coupled with the flexible body’s modal coordinates.

Simulation Results

Time-domain simulations were performed on the ADAMS model of the brake-axle-
suspension system described above. A light brake application process was simulated by
stepping up the nominal air chamber pressure to a steady state value. Four different values
of the kinetic friction coefficient were investigated. In each of the four cases, there was a
phase shift (time delay) between the brake actuator at the driver’s side and the brake
actuator at the passenger’s side in order to excite the axle torsion (anti-symmetric leaf -
spring bending) mode.

Figure 3 shows the friction force between the brake shoe and the brake drum at a discrete
contact point. This figure shows that the fluctuations in the friction force increase as the
coefficient of kinetic friction increases. For low values of the kinetic friction coefficient,
the transient oscillations are eventually damped out. In contrast, for high values of the
kinetic friction coefficient, the transient oscillations give rise to high amplitude, self-
sustaining oscillations. An eigenvalue analysis of the brake system reveals that the
frequency of the brake shoe radial motion (also referred to as normal oscillation) is close
to the frequency of the axle torsion/anti-symmetric leaf spring bending mode of vibration
(also referred to as tangential oscillation) over a limited range of the steady state air
chamber pressure. The presence of friction couples these two modes of oscillation, and



when the frequencies of these two modes coalesce, the system becomes momentarily
unstable and enters into a stable limit cycle. It is worthwhile to note that this phenomenon
is a characteristic of a nonlinear dynamic system, therefore this type of system behavior
can not be predicted by the use of linear structural dynamic analysis codes.

Figure 4 shows the pitch plane orientation of the brake spider. This figure shows that the
brake spider (and the whole brake assembly) starts to “rock” when the brake shoes engage
the brake drum. Again, we can observe the destabilizing effect of the kinetic friction
coefficient. Figure 5 shows the corresponding fore-aft deflection at a spider-axle
attachment point, and Figure 6 shows the most dominant vibration modes that contribute
to the deflection of the axle/leaf spring assembly. This figure shows that the axle
torsion/anti-symmetric leaf spring bending mode (dashed curve denoted by Q4) is indeed
the mode that coalesces with the brake shoe radial motion.

Conclusion

In this paper, the use of flexible body dynamics within ADAMS in order to simulate
nonlinear dynamic instability has been presented. The flexible body is described by an
assumed set of modes which are derived from a finite element modal analysis of the
flexible body. This set of assumed modes is included in the ADAMS model through the
use of GSE statements which couple the rigid body dynamics equations with those of the
flexible body dynamics equations. The modal description of the flexible body plays an
important role in characterizing the dynamic instability. The presence of friction couples
two vibration modes whose natural frequencies are dependent on system parameters.
Under certain conditions, the natural frequencies of the two coupled modes may coalesce,
and consequently, the system momentarily becomes unstable and enters into a stable limit
cycle. This limit cycle is characterized by high amplitude, self-sustaining oscillations.
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