

Pipeline Inspection Tool Virtual Prototyping

> Poul Laursen Statoil MDPT Project Team

Jack S.P. Liu David Fredriksson Mechanical Dynamics, Inc.

2000 International ADAMS User's Conference June 19-21, 2000

- Introduction
- Background
- Approach
- Simulation & Results
- Lessons Learned
- Conclusion

Pipeline Survey 1.10 In-line Inspection

North Sea Pipeline System

Floating Production Facility

The challenge

- 28" compressed diameter at launch
- Travel via service riser or launched sub-sea (300 m)
- Travel ERB and section of 28" diameter pipelineer Zone
- Travel the transition cone
- Travel 800 km of 42" diameter pipeline to shore
- Landline and 3 fjord crossing

Anshor Point ERB

Service Riser Touch Down

The tool includes major sub-systems connected by links

Approach

Model Description

 The model of the tool included the tow and magnetizer sections, and a simplified stabilizer section, connected by links and force elements

Mechanical Dynamics

Model Description

• Tow Section: The tow section provides the propulsion directly from the pipeline product flow. The following components were modeled:

 Magnetizer Section: The magnetizer section generates the magnetic field used for the pipeline inspection. This field generates very high forces between the linkages and the pipe. The model includes:

Model Description

 Stabilizer Section: A stabilizer section replicated the test configuration and stabilized the magnetizer. A simplified model was used which includes:

Mechanical Dynamics

Import 3D CAD Model

• The A/View macros created all repeated parts, joints, forces, and motions for the model.

Define Joints

- Revolute joints wheels to arms, wheels to magnetizer links, arms to axle, link to axle.
- Spherical joints floating section to tow axle, front magnetizer links to magnetizer bars, cups to arms.
- Hooke joints magnetizer bars to rear magnetizer links.
- Orientation joint primitives cup to tow axle.
- In-line joint primitive stabilizer axle to magnetizer axle.
- Translational Joints stabilizer arms to stabilizer axle, tow axle to ground

- Develop Contact Model
 - Types of contact forces used in the model include:
 - Arm stops vforce
 - Synchronizers vtorque
 - Wheels to pipeline gforce
 - Magnetizer brush to pipeline gforce
 - Bumper nose to pipeline gforce
 - Float section to tow axle vforce

Develop Contact Model

- Tow arm synchronizer forces bi-stop impact forces (vtorque)
- Magnetizer link synchronizer forces bi-stop impact forces (vtorque)

Magnetizer Links

Tow Arms

Define Force Elements

- Bushings bumper nose to tow axle, float section to tow axle
- Linear spring dampers tow arms, magnetizer links, and stabilizer arms
- Magnetizer flux forces constant force vectors (vforce)

Magnetizer flux forces

Define Force Elements

Tow driving forces - empirical data (vforce)

Driving force orientation

Testing data

Define Force Elements

• Flexible tow link - Beam elements, correlated with test data.

Flexible tow link

Model

- Model Statistics
 - Number of moving parts = 389
 - Number of DOF = 316
 - Number of contact forces = 865
 - Number of force elements = 290
 - Overall mass = 4~5 tons
- CPU Time Statistics
 - Full model in transition = 34 hours (Pentium II, 450 MHz)
 - Full Model in straight weld pipe = 44 hours (SGI Indigo2, 195MHz)
 - Full model in bent pipe = > 200 hours (Pentium II, 450 MHz)

Pipeline test circuit features

The model was tested in three separated sections:

42" bend + straight + weld

Transition

28" bend + straight

Simulation & Results

Test simulations with tow section only

28" bend

Mechanical Dynamics

Full model with 42" straight weld pipe

Front Tow Arm Wheel to Pipeline Contact Force

Simulation & Results

Full model with transition pipeline

mm/sec **Pipeline center** 2.15 Time (sec) 6.75 Offset of Tow Axle Center Line Tow axle center E 44 Time (sec) 2.25 8.75

Tow Velocity

Full model with 42" bent pipe

Lessons Learned

- Start small & refine model
 - Test each modeling element in a single arm or linkage, e.g.,
 - wheel contact force, tow arm spring, tow arm synchronizer...
 - Test each tool section separately with all pipe geometry, e.g.,
 - tow section, magnetizer, and stabilizer
 - Test the full model with imposed motions and constraints
 - static > transient > dynamics
 - Test the full model starting with simple pipe geometry to complex pipe geometry, i.e.,
 - straight > transition > bend

_essons Learned

Convergence problems: artifact versus reality

- ADAMS/Solver sometimes experienced difficulty with the large number of contact forces and DOF
- Model convergence problems occurred when highly concentrated forces were generated by the full model running into the bend section
- The magnetizer linkage was broken in the physical prototype when the tool was sent into the bend section

Lessons Learned

Accurate test data required for model input

- Test data was used to characterize:
 - tow driving forces
 - tow link bend and shear test
 - magnetizer flux
 - wheel contact stiffness and frictions
 - magnetizer brush force contact stiffness and frictions
- Model components were individually tested to ensure correlation to test data

Summary & Conclusion

- Using ADAMS to create a virtual prototype of the pipeline inspection tool was an innovative approach not previously attempted in the oil industry
- ADAMS provided comprehensive data which contributed to the understanding of system behavior prior to completion of hardware prototype and testing.

