



# MDI 2000 and Beyond



Mechanical Dynamics High Value Virtual Prototyping Solutions



Expanded Virtual Prototyping Application Areas

Web-based Functional Collaboration

Integrated Virtual and Physical Testing

> Industry-specific Solutions





Motion/

Performance

Vibration

Durability Fatigue





# Processes to drive customer valueArchitecture to support innovation











Mechanical Dynamics High Value Virtual Prototyping Solutions



Expanded Virtual Prototyping Application Areas

Web-based Functional Collaboration

Integrated Virtual and Physical Testing

> Industry-specific Solutions





Motion/

Performance

Vibration

Durability Fatigue











Mechanical Dynamics High Value Virtual Prototyping Solutions



Motion/

Performance

Vibration

Durability

Fatigue

Expanded Virtual Prototyping Application Areas

Web-based Functional Collaboration



Integrated Virtual and Physical Testing

Industry-specific Solutions







Mechanical Dynamics High Value Virtual Prototyping Solutions



Expanded Virtual Prototyping Application Areas

Web-based Functional Collaboration

Integrated Virtual and Physical Testing

Industry-specific Solutions





Motion/

Performance

Vibration

Durability

Fatigue



### **Empirical Dynamics Model (EDM)**





Elastomers

#### Dynamic K&C





**Shock Absorbers** 



Virtual Prototype



Tires

K&C







#### ADAMS Virtual Test Machine



Physical Test Machine



Mechanical Dynamics High Value Virtual Prototyping Solutions



Expanded Virtual Prototyping Application Areas

Web-based Functional Collaboration

Integrated Virtual and Physical Testing

> Industry-specific Solutions





Motion/

Performance

Vibration

Durability Fatigue



ADAMS









### **Functional Digital Airplane**





### ADAMS 10.1 First Customer Ship - April 2000

Web-Based Functional Collaboration
ADAMS/Engine Timing Mechanism module
Continue quality improvement



### **ADAMS/Insight Facilitates** Web Collaboration

| TIM<br>PW16 mails (<br>Back Forw<br>& Book | E = 0.00 |                                                                                                     |                                                                                                                                                                                                                                                                                  |                                                 |      | 2000<br>000000000000000000000000000000000 |
|--------------------------------------------|----------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------|-------------------------------------------|
| 🖉 Internet 👔                               |          |                                                                                                     |                                                                                                                                                                                                                                                                                  |                                                 |      |                                           |
| Responses rron                             | n Exp    | eriment "MDI                                                                                        | _Demo_venio                                                                                                                                                                                                                                                                      | :ie                                             |      |                                           |
| Factor                                     | Units    | Current                                                                                             | Tolerance                                                                                                                                                                                                                                                                        | Min                                             | Max  |                                           |
| Front_ride_spring                          |          | 1                                                                                                   | 0.05                                                                                                                                                                                                                                                                             | 0.9                                             | 1.1  |                                           |
| Rear_ride_spring                           |          | 1                                                                                                   | 0.05                                                                                                                                                                                                                                                                             | 0.9                                             | 1.1  |                                           |
| f_lca_rear_z                               |          | 185                                                                                                 | 2                                                                                                                                                                                                                                                                                | 180                                             | 190  |                                           |
| f_tierod_outer_z                           |          | 330                                                                                                 | 2                                                                                                                                                                                                                                                                                | 325                                             | 335  |                                           |
| f_lca_front_y                              |          | 400                                                                                                 | 3                                                                                                                                                                                                                                                                                | 395                                             | 405  |                                           |
| f_camber_ang                               | "deg"    | -0.5                                                                                                | 0.5                                                                                                                                                                                                                                                                              | -1.5                                            | -0.5 |                                           |
| inertia.                                   |          | 100                                                                                                 | 5                                                                                                                                                                                                                                                                                | 90                                              | 110  |                                           |
|                                            |          | L                                                                                                   |                                                                                                                                                                                                                                                                                  | 1.0                                             |      |                                           |
| Handling                                   | Units    | Estimate                                                                                            | Tolerance                                                                                                                                                                                                                                                                        |                                                 |      |                                           |
| Roll_Rate                                  |          | 4.2312                                                                                              | 1.3587e-0                                                                                                                                                                                                                                                                        |                                                 |      |                                           |
| Understeer                                 |          | 2.9553                                                                                              | 3.1996e-0                                                                                                                                                                                                                                                                        |                                                 |      |                                           |
| Yaw_Rate                                   |          | 1.4776e+02                                                                                          | 1.5998                                                                                                                                                                                                                                                                           |                                                 |      |                                           |
| Ride                                       | Units    | Estimate                                                                                            | Tolerance                                                                                                                                                                                                                                                                        |                                                 |      |                                           |
| Ride_vert                                  |          | 8.0796e-0                                                                                           | 4.0813e-02                                                                                                                                                                                                                                                                       |                                                 |      |                                           |
| Ride_Pitch                                 |          | 7.7226e-0                                                                                           | 5.3867e-02                                                                                                                                                                                                                                                                       |                                                 |      |                                           |
| Durability                                 | Units    | Estimate                                                                                            | Tolerance                                                                                                                                                                                                                                                                        |                                                 |      |                                           |
| Life A                                     |          | 1.8917                                                                                              | 1.5117e-01                                                                                                                                                                                                                                                                       |                                                 |      |                                           |
| Life B                                     |          | 6.2021e+0                                                                                           | 9.9748                                                                                                                                                                                                                                                                           |                                                 |      |                                           |
|                                            | i        |                                                                                                     | 1                                                                                                                                                                                                                                                                                | 1                                               | I    |                                           |
|                                            |          | Factor<br>f_tierod_outer_z<br>f_lca_rear_z<br>Rear_ride_spring<br>Front_ride_spring<br>f_camber_ang | From         To         Effect         El           325         335         -6.09         180         190         -2.405           0.9         1.1         -2.191         0.9         1.1         1.782           -1.5         -0.5         -1.027         -1.027         -1.027 | fect %<br>4.14<br>1.63<br>1.49<br>-1.21<br>0.70 |      |                                           |

Mechanical

**Dynamics** 

#### **ADAMS/Insight**

- Separate key vs. insignificant design parameters
- Understand the impact of design decisions on a broad range of customer requirements
- Manufacturing variations can be considered up front to improve design robustness
  - Collaborate on design specifications across engineering enterprise





### **ADAMS/Engine 10.1**

#### Major Capabilities

Timing mechanism module – roller & bushing chains







### ADAMS/Rail 10.1

#### Major enhancements:

- Transition to ADAMS/Car architecture
- Wheel-rail profile preprocessor
- Irregular track modeling
- Medyna contact element support







### ADAMS 11.0 First Customer Ship – November 2000

- General 3D contact
- Expand ADAMS in vibrations and durability
- Extend Functional Digital Car





### **3D** Contact

- Precise contact detection using Parasolids geometry engine
- Multiple point contact capability
- Contact force graphics
- Available in ADAMS/View and ADAMS/Solver





### **ADAMS/Vibration - Durability**

Re-use your ADAMS model for extended test disciplines

#### Major Vibration Capabilities:

- Forced Vibration Animation
- Forced Vibration Plotting
- Modal Participation

Mechanical Dynamics

Transfer function analysis

#### Major Durability capabilities:

- Support of MTS rpc file to exchange data with MTS test equipment
- Support of nCode dac file to exchange data with nCode fatigue analysis software







### Mechanical Dynamics Test Integration for 11.0 Support of EDM

#### ADAMS/View, ADAMS/Car, ADAMS/Pre











### ADAMS/Car 11.0



### Major enhancements

- Parametric flexible twist beam and other simple components
- Fully transition all events to Driving Machine
- ADAMS/Hydraulics integration
- EDM integration
- Improved software quality testing





### ADAMS/Pre 11.0



### Major enhancements

- Fully transition all events to Driving Machine
- ADAMS/Hydraulics integration
- EDM integration
- New suspension templates





### **ADAMS/Engine 11.0**

#### Major Capabilities

Tooth belt extension to timing mechanism module
 Simple gear extension to ADAMS/Engine package





# **High Value Solutions**

#### ADAMS/Full Simulation

Mechanical Dynamics

- Improved software performance for large models
  - Dynamically linked libraries
  - Quickview graphics performance
  - Enhancements based on user feedback
    - Move panel
    - Bitmap on curve
    - Page header/footer
    - Minimal names
- Improved software quality







### **High Value Solutions**

#### ADAMS/Solver

Mechanical Dynamics

- Solver robustness
  - Fixed-step integrator
  - Static solver enhancements
- C++ solver
  - Continue drive towards multi-tier web based architecture
  - Primary solver for ADAMS/Vibrations











### ADAMS 10.1 First Customer Ship - April 2000

### ADAMS 11.0 First Customer Ship – November 2000

