ADAMS/Insight and Rapid Simulation

Doug Hargett & Stephan Koerner Mechanical Dynamics, Inc.

2000 International ADAMS User Conference

Dynamic DNA

"Instead of being 20% there when we start driving prototypes, with (computer-aided engineering) we are 80% there" - Ford Motor Company 1998

Challenges Facing Corporations Today

- Cut design cycle time
- Predict behavior
- He who connects first to their data wins!

Managing Risk Through Better Information

Mechanical Dynamics

How?

How do we get more information up-front?
How do we learn about our design earlier?
How do we connect with our data?

Mechanical Dynamics

Multi-Body Modeling Tools

Mechanical Dynamics

- Learn the best modeling techniques
- Build-up knowledge of specific systems
- Evaluate one design at a time
- Requires modeling expertise

Multi-Body Modeling Tools

ADAMS/Solver

ADAMS/Flex

ADAMS/Controls

ADAMS/Hydraulics

ADAMS/Driver

Parametric Modeling Tools

- Build complex multi-body models from base set of parameters
- Bookshelf corporate expertise
- Utilize consistent methods
- A/B comparison is easy, effects of design changes are analyzed quickly

Mechanical Dynamics

Users don't have to develop methods

ADAMS/Insight is the Key

- Greater understanding of system under investigation
 - Identify primary inputs
 - Identify interactions of inputs
 - Simplify system
- Communicate findings in an interactive, easy to use, format
- Reduce time to market

Together these Virtual Prototyping Solutions help you...

- Achieve more efficient collaboration
 - between departments
 - between companies
- Achieve more efficient design reviews
 - Quick 'What if' analyses
 - Immediate feedback

Old Collaboration Model

New Collaboration Model

Complete Virtual Prototyping Solution

How long does it take to evaluate a design space?

Example System

Case Study: Characteristic Curves of Automotive Suspension

- Toe, Caster, Camber curves are essential properties of a suspension
- Curves represent change in angular orientation of wheel under different loading conditions
- Curves must be continually evaluated as design changes

Ride Motion Analysis

Mechanical Dynamics

.1

Problem Statement

- Packaging problems with current design
- Tie-rod spindle connection point must be moved
- Would like to move tie rod:
 - 10 mm outboard
 - 14 mm aft
 - 15 mm up
- Is this Okay?

Dynamics

How could we solve this problem?

 Run two analyses: nominal, considered
 Publish difference

Sample Report (old approach)

Mechanical Dynamics

. *

Issues with Old Approach

Results are static

New analysis requests keep coming

Mechanical **Dynamics**

How do we want to solve this problem?

Setup experiment with ADAMS/Insight

- Define design space
- Define trial runs

How do we want to solve this problem?

Utilize parametric modeling tool

– Analyze set of trials picked by DOE theory

Use DOE theory and the response surface method

Fitted results give continuous information throughout design space

Start with Design Space

Add DOE Design points

Assign Trial Numbers

Analyze Model at Each Trial

Calculate Objective at each Trial

Mechanical Dynamics

Map Trial Objectives Back to Design Space

Mechanical Dynamics

Create Response Surface

Response Surface Method

- Provides continuous knowledge within design space
- Can be extended (hard to visualize)
 - More than 2 factors
 - More complex response types

ADAMS Results of Case Study

Back	چي Former	d Reload Home	🄏 📆 Search Netscape	Print	Security	Stop		N		Nominal = Current =
Responses fi	om Ex	periment "TCC Case 5	itudy"					-	20	
Factor	Units	Current	Teleconce	Min	Neppinal	Max	Description		-20	
font_ptll_z		1.4050e+03	2.0000	1.3950x+03	1.4050+03	1.4150x+03	Left Outer Tie Rod Ball X		-40 -60	
tont_jtll_y	1000	-6.6800e+02	2.0000	-6.7800e+02	-6.6800++02	-6.5800e+02	Laft Outer Tis Rod Ball Y		-1.4 -1.2 -1.0 -0.8 -0.6	na
ຍ່ານເງເມີລູ		5.3300e+02	2.0000	5.3300++02	5.4300x+02	5.5300e+02	Laf. Outer Tis Rod Ball Z		60 40	Nominal • Current •
front_pt012_x	mm	1.4050e+03	2.0000	1.3950x+03	1.4050++03	1.4150x+03	Right Outer Tie Rod Ball X		20	
tont_3t012_y	une.	6.6800e+02	2.0000	6.5800++02	6.5000+02	6.7000++02	Right Outer Tie Rod Ball V	-	-20	
Repense	Unit	Current	Televance	Desciption				-	44 48 48 50 52 54 58	
MAX_RF_TOE	deg	9.8909e-01	2.3104e-01	Motimum Le	t Front Toe				RE TOP	nı
MAX_FF_TOE	deg	2.7549e-01	5.6040e-02	Meetman Right Front Too						Nominal • Current •
Bet	Units	Min X	Max X	Deceiption					20	
RF_CAMBER	đeg	-60	60	Left Front Cumber of function of spindle rise polynomial)			(2nd order		-20	
RF_CASTER	deg	-60	60	Lef. Front Cutor as function of quindle ripolynomial)			(2nd order		-40	
RF_TOE	deg	-60	60	Left Front Toe is function of spindle rise (ind order polynomial)			d onler		-0.5 0.0 0.5 1.0	
Crawd 2000-04121	7.05 mile.	AD-MARKAN (Hos (Hos)							(ment)	

Mechanical Dynamics

Brief History of ADAMS Modeling

In the Beginning (70s-80s)

ADAMS/Solver

- Focus was on developing ONE model of ONE design
- Evaluation of design change required modeling expertise, could be time-consuming
- Evaluation of design change was error-prone

Parametric Modeling (90s)

- Pre-processors developed for specific systems
- Analysts maintained model parameters
- Standard modeling practices leveraged throughout organization
- Attribute specialists no longer needed to be ADAMS experts to get job done
- A/B comparisons faster

Today

- Analyst quickly evaluates design *space*
- Analyst quickly communicates results to organization

