A Study of Suspension Design Using Optimization Technique and DOE

by Keiichi Motoyama, Ph.D and Takashi Yamanaka Mechanical Dynamics Japan K. K.

ABSTRACT

A case study of suspension design using typical double wishbone suspension model was studied and discussed. Authors developed optimization system for suspension design based on Genetic Algorithms. Sensitivities of tolerances around optimum are calculated and discussed by DOE.

A Study of Suspension Design Using Optimization Technique and DOE

Keiichi Motoyama, MDJ Takashi Yamanaka, MDJ

Background

- Started to study suspension design based on optimization since 1999.
- Genetic Algorithm Optimization System was proposed (1999 Europe Conference)
- Propose Suspension Design Support System

Design Support System

• Component

Component

<Sub Component>

- Genetic Algorithm
- Simulated Annealing
- Auto Calculation

<Contribution>

- Find optimum
- Reduce time to design
- Auto design
- Young engineer can design

GA System

Mechanica Dynamics

Model & Design Variables

Vari abl e	Original	Mi ni mum	Maxi mum
	307	285	330
	1285	1263	1308
	384	360	405
	337	315	360
	1311	1288	1333
	472	450	495
	384	362	407
	1330	1308	1353
	710	688	733

Stroke vs. Toe Angle

Optimized Result

.....

Mechanical Dynamics

Variable	ORG	OPT
X1	307	293
Y1	1285	1271
Z1	384	403
X2	337	324
Y2	1311	1331
Z2	472	463
X3	384	394
Y3	1330	1242
Z3	710	702

0 ptim ization Result

Optimized Result

1

Mechanical Dynamics

Variable	ORG	OPT
X1	307	297
Y1	1285	1269
Z1	384	399
X2	337	318
Y2	1311	1315
Z2	472	474
X3	384	401
Y3	1330	1326
Z3	710	703

Optim ization Result

Component

<Sub Component>

- Random Generator
- QR decomposition
- Least Square Method
- MS Excel data
- Auto Calculation
 - By random number
 - By orthogonal array
 - By users' data

<Contribution>

- Reduce time to design
- Review design without calling ADAMS

Mechanical Dynamics

• Network discussion

Model & Design Variables RSM

Vari abl e	Ori gi nal	Mi ni mum	Maxi mum
	307	304	310
	1285	1282	1288
	384	381	387
	337	334	340
	1311	1308	1314
	472	<mark>469</mark>	475
	384	381	387
	1330	1327	1333
	710	707	713

Stroke vs. Toe

RS Model

Calculation for L64

Component

<Sub Component>

- RSM
- Random Generator
- Optimization
- MS Excel Data
- Monte Carlo Simulation
- Auto Calculation

<Contribution>

- Discuss robustness
- Review tolerance
- Review effect of elastic deformation

Conclusion

1)We have developed suspension design support system that has functions of optimization, RSM and consideration of robust design.

2)Using this system, we can find good suspension design easily, and we can discuss the design in detail.

3) We will clarify the validity of this concept through further case studies and discussion with design team.

