

Deutsche Bahn AG

Dynamic of Railway Bridges

by Dipl.-Ing. Manfred Zacher

Deutsche Bahn AG

Forschungs und Technologiezentrum

München

CONTENT

- 1. Introduction
- 2. Design of Railway Bridges due to DB code DS804
- 3. Resonance Phenomena
- 4. Vehicle/Bridge Interaction Model of DB Model
- 5. Integration of Finite Element Models in ADMS/Rail
- 6. Future work

Deutsche Bahn AG

1. Introduction

The max. deflection of a railway bridge is dependent on

- speed of the train
- span length
- mass, stiffness and damping of the structure
- axle loads of the train

Up to now railway bridges on the network of DB AG have been designed only due to a static analysis.

As for high speed trains a dynamic analysis is necessary because of resonance phenomena of the structures.

For example, after introducing the TGV on the line Paris-Lyon short bridges showed

- cracks and crumbles of concrete
- high ballast attrition due to high accelerations
- big track irregularities

Due to the work of ERRI D214 regulations for a dynamic bridge design should be introduced the Eurocode EC 1991-3.

Deutsche Bahn AG

2. Design of Railway Bridges due to DS 804

National code DS 804

Checks have to be carried out regarding (Listing is not complete)

- Ultimate limit state
 - load effects of the structure
 - stability analysis
 - impact behaviour
- Serviceability limit state
 - traffic safety (twist of the track, angular rotation at end of deck)
 - crack width control (concrete)
 - riding comfort

DB

Riding comfort:

Limit values for deflection (L/f) dependent on span length and speed under $\Phi \times LM UIC 71$

Traffic loads on the structure:

only a static analysis with

- Loadmodel UIC 71 multiplied with dynamic factor Φ or
- service trains multiplied with (1+φ'+0,5 φ'')
 φ' dynamic increment due to speed
 φ'' dynamic increment due to track
 irregularities

Load model UIC 71

$$\Phi = \frac{1,44}{\sqrt{L_{\Phi}} - 0,2} + 0,82$$

with the determinant L_Φ

Service trains are defined in DS 804

Dynamic increments can be calculated due to the formulae

$$\varphi'_{\rm UIC} = \frac{\rm K}{\rm 1--K+K^4}$$

with

$$\mathsf{K} = \frac{\mathsf{v}}{2\mathsf{L}_{\Phi}\mathsf{n}_0}$$

$$\varphi_{\text{UIC}}'' = \frac{1}{100} \left[56e^{-\left(\frac{L_{\Phi}}{10}\right)^2} + 50\left(\frac{L_{\Phi}n_0}{80} - 1\right)e^{-\left(\frac{L_{\Phi}}{20}\right)^2} \right]$$

with the 1st bending frequency n_0 of the structure and L_{Φ} like above

Range of validity für Φ , ϕ ⁴ und ϕ ⁴

Figure 6.9 from ENV 1991-3

 Φ , ϕ ' and ϕ '' are results of parametric studies, carried out by ORE D23 and ORE D128.

3. Resonance Phenomena on Railway Bridges

Resonance Phenomena occur due to

- high speeds and
- regularly spaced axle groups of the train.
- In case of resonance excessive bridge deck vibration can cause
- loss of wheel/rail contact,
- destabilisation of the ballast,
- exceeding the stress limits.

Resonance is given, if

$$n_{\text{Bridge}} = i \cdot f_{\text{excit}}$$
 $i = 1, 2, 3, 4$

with $f_{excit} = v/L_{vehicle}$ and the first natural frequency for bending n_0 the critical speeds can be calculated with the formula

$$v_{crit} = \frac{n_0 \cdot L_{vehicle}}{i} \qquad i = 1, 2, 3, 4$$

Dynamic Bridge Design

- When is a dynamic analysis required?
- What limits have to be checked?

A draft has been worked out for a proposed revision of Eurocode clauses on dynamic effects including resonance. As for simply supported bridges the results of ERRI D214 showed that

- resonance is unlikely for spans longer then 40 m.
- a dynamic analysis is not necessary if the given limit values (Table A and B in the flow chart diagram on the next page) are satisfied.

Resonance Phenomena

Deutsche Bahn AG

Limits that have to be checked in a dynamic analysis

- Bridge deck acceleration

for ballasted track: $a_{max} \le 0,35g$

for unballasted track: $a_{max} \le 0.5g$

- Load effects

If a dynamic investigation is required, the results have to be compared with the static analysis. ($\Phi \times LM \cup C71$)

The most unfavourable values of moments, stresses, etc. shall be used for the bridge design.

The speed range is from 40m/s up to 1.2 times of the envisaged line speed.

Example

Bridge on the line Würzburg - Hannover Steel beams encasted in concrete L = 11,8m, n_0 = 10,35 Hz, ζ = 2%, v_{max} = 280 km/h,

Trains:

- ICE 1: L_{vehicle} = 26,4m
- Thalys: L_{vehicle} = 18,7m

 \bigcirc

 \bigcirc

 \bigcirc

 $\bigcirc \bigcirc$

- Talgo: $L_{vehicle} = 13,14m$

Critical Speeds [km/h]

 \bigcirc

	Talgo	Thalys	ICE 1
i=1	490	697	984
i=2	245	348	492
i=3	163	232	328
i=4	122	174	246

Resonance Phenomena

Deutsche Bahn AG DB

4. Vehicle/Bridge-Interaction Model used by DB AG

Track-Bridge-Model of DB AG

- Finite Timoshenko Beam Elements for Rail and Bridge
- linear Springs and Dampers in parallel
- Sleeper and Ballast as lumped masses (1 DOF)
- first and last element of the rail are connected together

Vehicle Model of DB AG

- 2D Model with 10 DOF (only vertical behaviour)
- linear springs and damper in parallel
- Wheel/Rail contact with a non linear spring (only compression forces)
- Train consists of a finite number of vehicles

Advantages:

- detailed knowledge of the mechanical background
- source code available
- short CPU times
- Disadvantages
- 2D Model
- modelling of complex bridge structures not possible
- not very flexible
- no animation
- can be used only by specialist
- poor documention

Goal: Coupling of 3D vehicle models with 3D bridge models

- detailed modelling of complex bridge structures
- high flexibility in modelling different types of vehicles
- exact calculation of the torsional behaviour
- meetings of train on double track bridges

Co-operation DB AG - MDI

Setup a project divided in 4 phases

- Phase A:

Development of Flexible-Point-to-Curve-Contact for moving forces along a given line on a flexible body.

- Phase B:

Setup of wheel/rail contact on independent wheels

- Phase C:

Setup of non-linear wheel/rail contact over a flexible rail

- Phase D:

Modelling in ADAMS all non-linear elements needed for a detailed analysis

6. Future work

- 1) Validation of the algorithm with
 - measured data
 - calculated result with the DB model
- 2) Start Phase C & D

3) Intensive testing on a series of bridges