Implementation of the wheel-rail element in ADAMS/Rail Version 10.1

Walter Kik, Dirk Moelle, ArgeCare Berlin
-.Linear wheel-rail element
-Tabular wheel-rail element
-.General wheel-rail element

Linear wheel-rail element

Mechanism for linear kinematics

- left: lateral movement
- right: yawing

Linear wheel-rail element

Circular profiles and contact angle as

 function of:- conicity
- contact angle parameter
- roll angle parameter
[according dissertation of Lutz Mauer]

5th ADAMS/Rail Users‘ conference, Haarlem 2000, May, 10-11th

Linear wheel-rail element Contact geometry

MODOO21: PASCAL WHEELSET CIRCULAR PROFILES

Contact parameter functions for tabular element

-Linear: kinematic parameters
-quadratic: normal force
5th ADAMS/Rail Users‘ conference, Haarlem 2000, May, 10-11th

Linear wheel-rail element

- Input:
- equivalent conicity
- contact angle parameter
- roll angle parameter
- Pre-computation:
- contact angle
- Circular wheel and rail profile
- Simulation:
- numerical linearisation of tabular element

5th ADAMS/Rail Users‘ conference, Haarlem 2000, May, 10-11th

E

Tabular wheel-rail element

Pre-computation of contact parameters as function of relative displacement of one wheel to the rail

Parameter: static wheel load

Tabular wheel-rail element

Contact parameter table for wheel-rail profile combination S1002-UIC60, gauge 1435 mm , rail inclination $1 / 40$, wheel radius 0.45 m

Tabular wheel-rail

element

- Table:
- Relative lateral distance between wheel and rail RANY
- Rolling radius difference to the nominal rolling radius DRJ
- Contact angle in MRS TANDIA
- Contact ellipse longitudinal half diameter A
- Contact ellipse lateral half diameter B
- Contact point coordinate on rail, lateral BIA
- Contact point coordinate on wheel, lateral BJA
- Vertical distance of wheel RANZ
- No. of contact points (at the moment only 1)

Tabular wheel-rail element

5th ADAMS/Rail Users‘ conference, Haarlem 2000, May, 10-11th

Tabular wheel-rail

element

- Input:
- wheel-rail profiles
- relative configuration of wheel to rail (displacements and velocities)
- Pre-computation:
- contact table as function of relative lateral shift of one wheel to the rail and wheel load
- Simulation
- contact point and ellipse diameter ratio out of table
- normal contact force due to elongation of constant contact spring
- global creepage in contact point
- creep force computation using FASTSIM (Kalker or TU-Berlin), POLACH approximation.

General wheel-rail element

Computation of contact forces as function of relative configuration of one wheel to the rail

General wheel-rail element

- Input:

- wheel-rail profiles
- relative configuration of wheel to rail (displacements and velocities)

- Simulation

- computation of contact line on wheel and rail
- contact patch location and size due to penetration of undeformed contact line
- normal contact force due to undeformed distance in contact patch
- global creepage in contact point
- creep force computation using FASTSIM (TUBerlin), Johnson-Vermeulen approximation with extension due to spin.

Irregularities and disturbances

- Rail irregularities u
- lateral and vertical shift of left and right rail
- Rolling radius disturbances $\Delta \mathrm{R}$

5th ADAMS/Rail Users‘ conference, Haarlem 2000, May, 10-11th

Resilient wheels

- Axle and wheel rim are different bodies
- Rolling radius for wheel rim is constant

5th ADAMS/Rail Users‘ conference, Haarlem 2000, May, 10-11th

Future development Tabular element

- Table for more point contact
- Changing wheel-rail geometry along track

Future development General element

- FASTSIM for non-elliptical contact patches
- Changing wheel profiles as function of rolling angle and time
- Changing rail profiles along track

Tabular wheel-rail element

Comparison of tables for gauge 1432, 1440, 1448, profile combination S1002-UIC60, rail inclination $1 / 40$

5th ADAMS/Rail Users‘ conference, Haarlem 2000, May, 10-11th

