

ADAMS/Rail Users Community and Development Directions

Gabriele Ferrarotti ADAMS/Rail Product Manager

4th ADAMS/Rail Users Conference Utrecht, the Netherlands April 28th, 1999

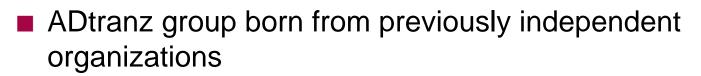
Mechanical

Dynamics

- The ADAMS/Rail Customers Worldwide
- The new Development Team
- Current and Future Development Highlights

The ADAMS/Rail Customers Worldwide

245 Active ADAMS/Rail Seats Worldwide


ADAMS

- 49 Railway Organizations and Research Centers forming the ADAMS/Rail Users Community
- Significant commitments achieved with international companies

Mechanical Dynamics

- Use of different simulation tools and techniques (partly self-developed)
- ADAMS/Rail seen as answer to a need of integration platform software for universal communication
- 15 installations in 8 locations

Mechanical Dynamics

"China's Ministry of Rail has selected ADAMS[®] as its exclusive virtual prototyping software, leading to a three-year sales and service agreement with China National Railway Locomotive and Rolling Stock Industry Corporation (LORIC) for ADAMS and ADAMS/Rail, Mechanical Dynamics' specialized railcar simulation software."

- Responsible for the design, development, manufacturing, and marketing of rolling stock, locomotives, a.o.
- ADAMS/Rail implemented to develop and test new railcar designs for the rapidly expanding Chinese railway system
- Installations in all LORIC subsidiaries, including Sifang Railway Institute and Works, Zhuzhou Railway Works, and Dalian Railway Institute and Works

Mechanical Dynamics

The New ADAMS/Rail Development Team

- Objectives
 - Increment human resources to power up the development process
 - Establish a productive working environment for ADAMS/Rail
 - Advantage of synergy effects through one location
 - Distribute know-how
 - Get local MDI staff focused on customer support
 - Improve reliability of test procedures with
 - Typical railway applications
 - ADAMS specific test examples
 - Provide users with better modeling, solution, postprocessing options

Mechanical Dynamics

ADAMS/Rail Development Team 99 - Resources

- In addition to the ADAMS main development staff located in the MDI headquarters:
 - Diego Minen ADAMS/Rail Development Coordination
 - European Technical Coordinator
 - Experience in Project Managing of MDI products (A/Flex)
 - Giuseppe Manzilli ADAMS/Rail Core Development
 - MDI Italy Senior Consultant
 - 8 years experience in Fortran and C programming of ADAMS/Solver Subroutines and development of external modules
 - ADAMS/Rail experience acquired through consulting activities in the railway industry

Mechanical Dynamics

ADAMS/Rail Development Team 99 - Resources

- Guido Bairati ADAMS/Rail GUI Development Coordination
 - MDI Italy Senior Consultant
 - Experience with ADAMS/View Customization, Template Builder (ADAMS/Car)
- Alessio Lombardi ADAMS/Rail GUI Development
 - MDI Italy Consultant

ADAMS

- Experience with ADAMS/View and ADAMS/Car advanced consulting projects
- ADAMS/Rail experience acquired through graduation thesis in the railway field

Mechanical Dynamics

ADAMS/Rail Development Team 99 - Partners

Partnership with NS Materieel Engineering

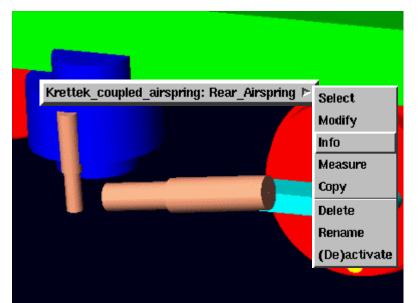
- Technical Specification
- Validation
- User Documentation
- Engineering services

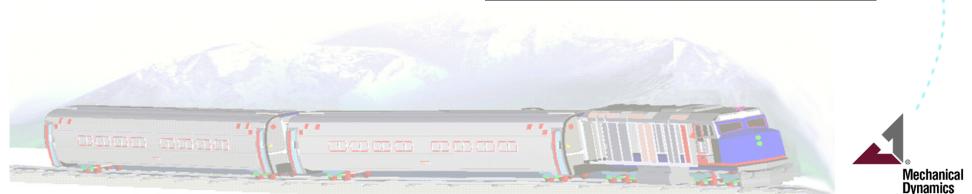
- Partnership with ArgeCare
 - Core Development
 - Hotline/support
 - User Documentation
 - Consulting projects

Current Development Highlights

- New Comfort Toolkit
 - Includes the most common comfort indices used in the railway community (UIC standards)
 - ISO2631 Index
 - Wz Sperling ISO/Sperling
 - Sy Sz
 - Nmv
 - Y, H, Y/Q
 - Fully specified and validated by NS
 Materieel Engineering

X Acceleration			
Y Acceleration			
Z Acceleration			
lin. frequency (Hz)	0.4	Max. frequency (Hz)	100


Mechanical Dynamics



Current Development Highlights

Railway elements UDE formulation

- Damper w/ series stiffness
- Suspension
- Bumpstop
- Nishimura Airspring
- Krettek Airspring (single or coupled)

ADAMS Current Development Highlights

Example: Krettek airspring

- Described with non linear thermodynamic equations
- Takes into account the heat exchange with surroundings
- Possibility of coupling airsprings
- Possibility of introducing height control

Krettek Coupled Airsprin	g 1	Airspring Heat transfer are	0.0
I Marker 1		Reservoir Heat transfer ar	0.0
J Marker 1		Mass flow losses Factor	0.7
l Marker 2		Specific heat const pressu	1004.0
J Marker 2		Specific heat const volume	714.0
Aeff	0.25	Airspring Heat transfer coe	0.0
d(Aeff) / dz	-0.25	Reservoir Heat transfer co	0.0
Airspring Initial Volume	0.025	Pipe Diameter	6.0e-2
Reservoir Volume	0.025	Pipe Length	1.0
Polytropic coefficient	1.32	Single Or Double Height Co	single 💷 🛛
initial Condition		Preload XY	0,0
Static force	0	Stiffness XY	1e5,1e5
initial temperature	293.0	Damping XY	1,1
Atmospheric Pressure	1.0532e5	Orifice Diameter	0.015
Atmospheric Pressure	formation		D.015
Atmospheric Pressure	formation Parent Children ject Name : ject Type : rent Type : ocation : 0.	Modify J Verbose .vehicle_model.Rear_Air Krettek_coupled_airspri Model 0, 0.0, 0.0 meter, meter 0, 0.0, 0.0 deg	Clear Read from File spring ng

Current Development Highlights

 ADAMS/Controls Integrated in ADAMS/Rail

ADAMS

- ADAMS/Controls macros and dialog boxes available from the ADAMS/Rail main graphical interface
- A/Solver and A/View executable files incorporate the A/Rail and A/Controls routines

File Prefix	ad_2_csd	
Input Variables		
Output Variables	J	
Csd Package	MATLAB	=
Туре	non_linear	
Initial Static Analysis	🔶 Yes 💠 No	
User Executable Name	(adams_controls_exe)	
	OK Apply	Cancel

Mechanical Dynamics

Mechanical Dynamics

Current Development Highlights

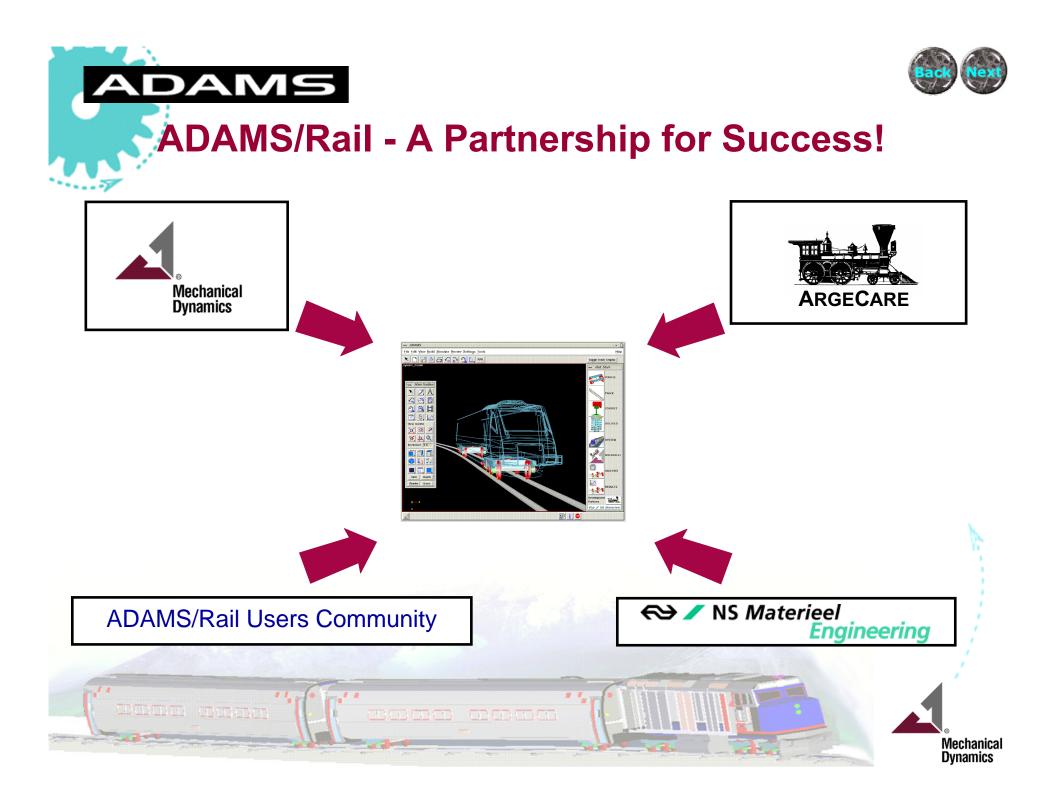
- New ADAMS/Rail Development Environment
- Each component (bogie, car body, ...) build as separated subcomponent
 - Working at system level
 - Automatic library creation
 - Easier model assembly
 - Interactive process
 - Batch process
 - Multiple use of same subcomponent in the full system
 - Efficient subsystem debugging
 - Automatic parametrics
 - Modeling with symmetrical approach

Current Development Highlights

Separated Model Topology and Model Data

ADAMS

- Topology described in the template file (fully parametric)
- Data stored in property files (Teim Orbit format)
- Database structure allows easy data exchange


<u>File Edit View Build</u> _ddd		H
📥 Rail Template	Builder Double Wheelset Modify	
Wheelset Name	ddd.ues_wheelset	
Reference Frame	ddd.ground.hps_ddd	
Wheelbase	2.2	
Gauge	1.5	
Radius	0.46	
Mass 100.0		
Ixx 1.0E+08		
	lyy 1.0E+08	
	Izz 1.0E+08	
Color		
Color	blue gray 📮	
Color		
Color Y		
Color X x z		
Color X X Z		
Color × × z		
Color × × z		
Color × × z		
Color X X Z		
Color × × 2		
Color X X Z		

Current Development Highlights

- Two level Working Environment
 - Expert Interface
 - Subcomponent architecture definition (through Template Builder)
 - Access to all ADAMS modeling entities
 - Possibility of creating test procedures
 - Standard Interface
 - Specifically for design, test, and development engineers
 - Possibility of intervening on parametric contents of the model
 - Use of database libraries to easily create models
 - Simulation environment tailored to working procedures

