

Rail Technology Unit

UTRECHT, THE NETHERLANDS APRIL 28th - 29th 1999

Introduction to the Rail Technology Unit at Manchester Metropolitan University

Simon Iwnicki & Julian Stow

TEL: +44 161 2476247 s.d.iwnicki@mmu.ac.uk TEL; +44 161 2476252 j.m.stow@mmu.ac.uk

Introduction

Rail Technology Unit

Areas of Expertise

- Computer simulation of vehicle dynamic behaviour.
- Component testing
- Rolling railway test rig
- Expert services resourcing and project co-ordination.
- Leading edge research.
- Software benchmarking.

Dynamic Modelling

Rail Technology Unit

Expertise in:

- Evaluating vehicle-track interaction.
- Studying track and substructure degradation.
- Assisting with vehicle design / optimisation
- Problem solving on existing fleet.
- Derailment analysis.

Computer Modelling

Rail Start

VEHICLE

Rolling Railway Test Rig

- 1/5th scale rolling railway test rig for study of lateral dynamics.
- Scale speeds up to 400km/h
- Rollers excited using digital controllers & hydraulic actuators to simulate track inputs.
- Can be fully instrumented to measure bogie response.
- Applications include studying novel components or bogie designs.

- Range of servo hydraulic actuators and test machines.
- 'Hardware in the loop' testing
 - Real components running in a computer model
 - Allows track inputs in real-time.
- Instrumentation and data collection.
- Development of dedicated test rigs and software.

Expert Services & Project Co-ordination

- Worldwide contacts with railway engineering experts.
- Extensive experience of co-ordinating collaborative projects linking industry and universities.
- Organisation of industry conferences / seminars.
- Database of specialist railway expertise

Rail technology transfer

www.database

RTU TEAM	COMPUTER SIMULATION	PUBLICATIONS	BENCHMARKING
PROJECTS	COM PONENT TESTING	ROLLER RIG	OUR DATABASE

Details of specialist expertise within each institution.

- Details of existing rail industry related training courses / modules
 - Contact information via an interactive database of contacts.
 - Hyperlinks to the relevant web site where available. +44 161 2476238

Benchmarking

- Benchmarking undertaken for rail vehicle simulation packages
- Soon to be published in 'Vehicle System Dynamics'
- ADAMS Rail/MEDYNA
- SIMPACK
- VAMPIRE
- GENSYS
- NUCARS

Freight vehicles modelled

Rail Technology Unit

HAA coal hopper wagon

BYA COIL CARRIER WITH SWING MOTION BOGIES

102 TONNE STONE HOPPER WITH LTF BOGIES

3-piece freight bogie

Locos & Coaches

Rail Technology Unit

MK3 COACH BT10 BOGIES

CLASS 43 High Speed Train Locomotive

CLASS 86/0 LOCO

Size of dips

Track Model

Rail Technology Unit

Track Damage Prediction

Project Overview

Track Deterioration

Rail Technology Unit

the MANCHESTER METROPOLITAN UNIVERSITY

Track Settlement

Rail Technology Unit

ORE deterioration model

A statistical model with no track parameters which uses traffic volume, dynamic axle load and speed raised to the power of empirically derived factors.

Power law

Used by several railway organisations to predict track deterioration ballast pressure is evaluated and raised to the 2^{nd} (optimistic) or 4^{th} (pessimistic) power.

Track Settlement

Rail Technology Unit

Sato

Japanese measurements from track recording vehicles over many years have led to and empirical track settlement model based quasi-static ballast pressure and ballast acceleration together with vehicle speed and tonnage and factors for track type.

Track Settlement

Rail Technology Unit

TU Munich settlement model

Experiments under well controlled laboratory conditions have been used to establish equations to calculate rate of settlement. Ballast pressure is multiplied by the log of the number of axle passes as follows:

 $S_{opt} = 1.57.p. \Delta N + 3.04.p^{1.21}.lnN$

The first part of the equation relates to the initial settlement immediately after tamping and the second part relates to the longer term and more gradual settlement after about 10,000 axle passes.

Track settlement factor (per train) on 5 mrad dip

Summary

•Rate of settlement can be predicted from track force. -could be modelled or measured.

•Track force is sensitive to suspension design. -especially suspensions including friction damping. -current Mini-MARPAS model uses two linear coefficients.

•Costing per vehicle can be derived from rate of settlement. -data relating to changing SD, traffic and tamping cost required for a section of track

