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Abstract

When building finite element models, a lot of simplifying assumptions and estimates have to be made.
Idealisation, discretisation and parameter evaluation are all possible error sources. If these models have
to be used in lifetime estimations, optimisation processes or system synthesis computations, they have
to be a valid representation of reality. In this paper it is discussed how MSC/NASTRAN s01200 is used in
the process of validation and verification of dynamic finite element models.

This paper focuses on a frame support. It shows the different steps taken at both the experimental and
the analytical side and describes the complete process based on the ‘actual” application problems. The
main features of this support frame are the welded joints, the connections between solid and shell
elements and the modeling of a solid base by means of shell elements with a certain thickness. Using
powerful functionality’s such as correlation, sensitivity analysis and physical as well as proportional
updating, a well-correlated FE model is obtained and the welded joints and the thickness of the base are
identified as ‘hot spots’.



1. Introduction.

The requirements for higher performance and
efficiency force the analysis engineer to validate
the quality of his mathematical model by means
of experimental data and different correlation
tools. Lack of correlation demands the creation of
an updated FE model, using experimental data like
resonance frequencies, before any meaningful
analysis can be done. A modal updating case
evolves over several steps as indicated in fig. 1.

The first step aims at the development of a
synergetic data platform that contains both test
and analysis data in a coherent format. It contains
the interface between the FE program and the
modal analysis package on one side, and the
updating package on the other side. In this paper,
the LMS CAE Gateway/ Correlation/ Sensitivity/
Updating software is used for this purpose.

The second step deals with the matching of the
analysis nodes and test nodes, the different co-
ordinate systems (local and global), the different
name giving in test and FE and the development
of a common wireframe representation on which
both experimental and analytical data can be
visualised.

Once this step is completed successfully, one
can start to compare the dynamic behaviour of
both test and FE model. Different tools can be
used. Some of them are based on modal
information (modal deformation shapes and
resonance frequencies), others are based on
frequency information (frequency response
functions).

If sufficient correlation exists, the fine-tuning
of the FE model itself can start. If not, there is
probably a fundamental error in the analytical
model or in the test model. As a rule of thumb,
the application of modal updating algorithms
becomes relevant when the MAC values between
FE-mode shapes and experimental mode shapes
approach a level of 85%.

These advanced model tuning tools will bring
the experimental and analytical results into
agreement by modifying parts of the FE maodel.
The test results are used as targets. This procedure
is explained in this paper and illustrated by means
of a real case study.
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Figure 1 : Model Updating Scheme

2. Problem definition.

The model under investigation is a little support
frame. The main features are the connections
between the solid (top, base) and the shell
(triangular part) elements, the welded joints and
the modelling of the solid base by means of shells,

see Figure 2. Following the modal updating
scheme, the correlation between the finite
element model and the test model is first

investigated and based on the outcome, the finite
element model is further fine-tuned.
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Figure 2 : Frame Model with indication of the main
features. The different colours represent different
element groups (see § 5.1) or different properties (see §
5.2)



The width and the height of the structure are
respectively 82 cm and the 47,4 cm, the average
distance between two FE nodes is approximately
0.340.6 cm.

2.1. Modal Analysis.

The frame is dynamically characterised in free-
free conditions by means of an experimental
modal analysis, as part of standard testing
procedures. The test geometry (= wireframe)
consists of 17 test points : 1 reference point and
17 response points. Frequency response functions
were measured between the response DOFs (2
DOFs/point) and one excitation DOF, yielding in
34 FRFs. The modal analysis resulted in 9
deformation mode shapes in the frequency range
0-900Hz.
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Figure 3 : Test wireframe and correlated nodes. The
grey scale gives an indication of the distance (m)
between corresponding test/FE nodes.

2.2. Finite Element Model.

The structural dynamics FE model is an
MSC/NASTRAN model, and the modal parameters
(resonance frequencies and mode shapes) were
calculated in the frequency range from 0 to 750
Hz, in free-free conditions. Although the structure
operates in reality in non-free conditions, a
separate, subsequent tuning of structural and
‘clamping’ parameters simplifies the overall
updating effort. In this paper, the focus is on the
structural parameter tuning.

The initial FE model contains 3604 nodes and
3330 elements (shells and solids). There are 3
property cards : one solid property card for the
top, one shell property card for the base and one
shell property card for the remaining part, see
also Fig. 2. No special actions were taken to
model the joints or the connections between shell
and solid elements. It is the intention to check the

validity of these assumptions using different
model updating techniques. The FE analysis yields
13 modes (including the 6 rigid body modes) in the
selected frequency range.

3. Geometrical correlation.

The first step in the correlation consists of the
topological matching of the mesh of measurement
points with the mesh of finite element nodes.
This will solve the incompatibility between both
meshes, not only due the to difference in name
definition and mesh density, but also due to a
possible difference between both global and/or
local axis systems.

To align both global axis systems, it is
necessary to apply to one of the models a scaling,
a rotation about the origin and a translation.
Normally, these transformations are applied to
the test model, since the FE model is the model to
update. This node matching will result in a node
pair table containing the  corresponding
experimental and analytical nodes.

It is also necessary to check that DOFs as well
as nodes correlate. Each nodal displacement is
represented in its own nodal axis system which
implies that even after applying the estimated
transformations on the test geometry, the nodal
information for two correlated nodes can still not
be compared. A test displacement vector,
expressed in test nodal co-ordinates will be
translated to FE nodal co-ordinates by means of
the following actions :

definition the vector in global test co-
ordinates.
definition the vector in global FE co-
ordinates.

definition the vector in nodal FE co-ordinates.
Mathematlcally, this is expressed as [4] :

{Ucorr} - [EulerFE] iR" 1 ’.[EulerteS‘t] ?{Utest}

Now the following situations can occur with
respect to the dimension of the test vector {U"™'}

Dimension = 3 : the test vector can be
translated correctly into FE nodal coordinates
by means of formula (1). The dimension of the
translated vector equals then 3.

Dimension = 1 or 2 : the test vector can only
be translated correctly if each measured test
direction coincides with an FE local direction.
The dimension of the translated vector equals
then 1 or 2. If this condition is not fulfilled,
the transformation cannot be done due to the
matrix incompatibility.



The only way to perform the translation in all
other cases is to assume that the unmeasured
DOFs equal zero, thus that the displacement in the
unmeasured direction is negligible.

When the appropriate node pair table exists,
linking the experimental and the analytical nodes,
then mode shapes, response functions and
wireframe can be transferred between the test and
the FE model. Upon completion, one disposes of
an experimental and a numerical modal vector set
with mode shapes that can be jointly animated on
a single, unique wireframe representation of the
structure.

3.1 Test to FE transformation.

The geometry transformation parameters are
estimated based on an interactive selection of
three sets of corresponding nodes in both models.
This leads to a test node correlation percentage of
94.1%, thus all test nodes do correlate except for
the test node at the top, see Fig. 3 and Fig. 4.

s

Figure 4 : FE geometry with the correlated nodes on
top.
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To perform the DOF transformation, we have to
set the third, non-measured, direction equal to
zero. This will only be correct if the displacement
in this non-measured direction is indeed negligible.
In all other cases, we do lose some dynamic
information.

3.2. FE to test transformation.

By projecting the FE model onto the test model,
it is possible to transform the DOF information
correctly and to investigate thus the importance
of the assumption about the displacement of the
non-measured direction by means of a dynamic
correlation study between the two sets of modal
vectors in both cases (Test->FE and FE->Test).

Comparing the MAC-values (see equation (3))
calculated between

the transformed test modes and the original FE

modes, filtered with a DOF group which
contains all correlated nodes (node pair table)
and 3 DOFs/node (i.e. translational DOFs).
the transformed FE modes and the original test
modes, filtered with a DOF group which
contains all correlated nodes (same node pair
table) and 2 DOFs/node.
shows us that in general, the difference is
relatively small except for the last two mode
pairs, see Table 1. This gives us enough
confidence to proceed with the test model
projected on the FE model.

EMA f.| FEM f | Diff Diff MAC MAC
Hz Hz Hz (%) Fe/Test | Test/Fe
186.41 | 235.76 | 49.35 | 26.47 | 0.85 0.80
330.04 | 344.38 | 14.34 | 4.34 0.88 0.86
371.51 | 384.84 13.33 | 3.59 0.70 0.68
360.58 | 419.60 59.01 | 16.37 | 0.81 0.81
385.95 | 428.98 | 43.03 | 11.15 | 0.98 0.98
520.91 | 548.49 | 27.58 | 5.30 0.88 0.71
690.98 [ 723.00 | 32.02 | 4.63 0.82 0.74

Table 1 : MAC values when projecting FE on test and
test on FE

4. Dynamic correlation

4.1. Modal based correlation.

Now a complete, consistent data set has been set
up, an evaluation of the agreement between the
FE and experimental analysis can be undertaken
using different correlation techniques, such as a
visual comparison of the mode shapes on the
common wireframe of the structure, a Modal
Assurance  Criterion (MAC) calculation, a
MACCo, etc. [5]. A mode pair table is
automatically generated after selection of a
threshold MAC value, see Table 1. (threshold
MAC = 65%).

Inspection of the MAC-values, see Fig. 5, and
the MPT shows us that :

the deformation modes 3&4 (test) and 9&10
(FE) are switched in frequency.

7 mode pairs are found, with relatively high
MAC-values, but rather high frequency shifts.
FE modal frequencies are consistently higher
than test modal frequencies, indicating a global
stiffness over-estimation or a global under-
estimation of the total mass of the FE model.

However the total mass of the finite element
model equals physical mass of the structure. The
outcome of this dynamic correlation is thus



65acceptable and the FE model is suitable for

updating.
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Figure 5 : MAC. The x-axis represents the FE modal
frequencies, the y-axis the test ones.

4.2.Frequency function

correlation.

This section groups a further set of techniques,
such as visual comparison of the FRF functions,
FRAC or RVAC calculations, that can be used to
evaluate the agreement between the reference
(test) and verification (FE) model. The
experimental FRF’s are the measured ones, the
analytical FRF’s on the other hand are synthesised
within the LMS CAE/Gateway software using
modal superposition. To have analytical FRF’s
with a reasonable amount of damping, the
damping ratio’s of the experimental model can be
used using the generated mode pair table.

The Frequency Response Assurance Criterion
(FRAC) expresses the comparison between
experimental and analytical functions as a single
number between zero (no correlation) and one.
Frequency response functions with  similar
appearance can however show low FRAC values.
It can be shown that a global under or over
estimate of the stiffness or mass of an FE
structure, can give rise to a global frequency shift,
resulting in poor FRAC values even when the only
difference appears to be a frequency shift. If a
stiffness factor of a is applied to the structure,
then this will result in a frequency shift of Ca and
an amplitude shift of 1/a. By defining a frequency
factor b=Ca, and computing the FRAC values for
a range of values of b, a maximum value in this
range can be determined. This value indicates the
frequency shift required and hence the global
stiffness factor that needs to be applied in order to
improve the correlation between the analytical
and experimental frequency response functions.

based

The driving-point FRAC, see Fig. 5, shows us that
decreasing the global stiffness would improve our
correlation results. We could have made the same
conclusion from the mode pair table.

C

Figure 6 : FRAC for different frequency factors.
Original (solid black), After link updating (dashed
black), After SOL200 updating (solid grey)

5. Correction of the FE model.

In a model updating project, three of the
preparatory phases are the correlation study, the
selection of the updating parameters and the
updating targets (in this case the test modal
frequencies).

The selection of the FE model parameters
which are subject to change, is usually based on the
interpretation of the correlation results. It is
important that these parameters do have
sufficient influence on the FE modal frequencies.
This can be investigated by means of a ‘sensitivity
analysis’ (sensitivity of the modal frequencies
with respect to parameter changes). Apart from
the visualisation of critical areas, the sensitivity
results are used as direct input for the optimisation
process. In fact, the sensitivity coefficients are an
essential part of the mathematical formulation of
the error minimisation function. The correction
step will try to minimise the difference between
test and FE modal frequencies.

The kind of updating parameters is dependant
on the actual approach used to update the finite
element model based on the experimental results.
In this paper, two approaches are used [1],[3] :

The first approach is a one-step, non-iterative
approach in which parameters are corrected
by solving a system of sensitivity equations.
This updating approach will be referred to as
the “Link Solution’.



The second approach is an iterative method
based on a sensitivity formulation. The
definition of the updating problem will be
transformed into an optimisation problem in
MSC/NASTRAN. This updating approach will
be referred as the ‘MSC/NASTRAN Sol200
Solver’.

5.1. Link Solver Updating.

Based on a simple straightforward spatial
subdivision of the FE model in element groups, see
Fig. 2, the “proportional’ parameters {p} which
are subject to change are defined by assigning a
‘proportional’ stiffness parameter to each group
of elements. The parameters are proportional to
the mass and stiffness matrices (such as Young’s
modulus and mass density). The solution of the
updating problem is then found in a single step by
the (constrained) solution of the following set of
equations:

[SKDr} ={¢}
(2)

This direct solution scheme is fully independent of
the FE code. No communication between the FE
code and the updating (and sensitivity) code is
required when using this approach. Once the
‘optimal’ solution has been reached, the
MSC/NASTRAN input deck is corrected with the
new parameter values and a new ‘normal modes’
analysis is performed to obtain the corrected FE
model results.

The residues {e} are estimators of the
‘distance’ between the FE model and the
experimental model, and are in this case the
differences between the FE resonance frequencies
and the corresponding experimental resonance
frequencies (which are the targets). The matrix [S]
is a sensitivity matrix, and contains the
sensitivities of all residues to all parameters
(proportional sensitivity results). This matrix is
the outcome of a proportional sensitivity
analysis. This type of sensitivity analysis can be
performed without any knowledge of the element
definitions, and is therefore quick and easy to use.
The main observations of the proportional
stiffness sensitivity analysis are :

All sensitivity coefficients are positive.

The groups around the welded joints and the
groups of the base are the most sensitive.
Sensitivity values increase as the modal
frequency increases.

Two cases were investigated :

In the first case, {e} contains the full mode
pair table, see Table 1, and no constraints are
applied to the updating parameters. All
parameters have the same ‘weight’ in the cost
functions. Using this set-up, we can check if
the Link Solver identifies the welded joints and
the base as ‘hot spots’.

The updated values for the proportional stiffness

parameters can be visualised on top of the

geometry, see Fig. 7.
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Figure 7 : Parameter changes after ‘Link updating".
The default values for all parameters before updating
were one.

One will notice that the values of all proportional
stiffness parameters do decrease and that
especially the groups around the welded joints are
identified as ‘hot spots’. The proportional
stiffness change of the elements of the base
however was minor.

Applying these updated parameters to the FE
model results in an ‘updated’ FE model valid in a
frequency bandwidth between 0-750Hz. The
outcome of a new correlation analysis between the
original test model and the corrected FE model is
given in Table 2.

EMAT. | FEMf Diff Diff MAC MAC
Hz Hz Hz (%) before after
Test/FE | Test/FE
186.41 | 212.26 | 25.85 | 13.87 | 0.80 0.80
330.04 | 329.01 | -1.03 | -0.31 | 0.86 0.94
360.58 | 356.31 | -4.28 | -1.19 | 0.81 0.87
371.51 | 367.59 | -3.92 | -1.05 | 0.68 0.71
385.95 | 384.14 | -1.82 | -0.47 | 0.98 0.97
520.91 | 518.97 | -1.93 | -0.37 | 0.71 0.74
690.98 | 704.35 | 13.37 | 1.94 0.74 0.78

Table 2 : Mode pair table after ‘Link updating’.

The frequency mismatch is successfully tackled
with exception of the first mode and the new
MAC values are satisfactory. The proportional
stiffness updating as used in the Link Solver is not



able to fully correct the FE results and is thus not
able to provide a model which is valid in the
bandwidth 0-750Hz. However, the mode switch
has disappeared and the FRAC peaks at a
frequency factor value of almost one, see Fig. 6.

In the second case, {e} contains only the first
mode pair and no constraints are applied to the
updating parameters.
The updated values for the proportional stiffness
parameters are shown in Fig. 8. The groups around
the welded joints AND the groups of the base are
now identified as “hot spots’.
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Figure 8 : Parameter changes after "Link updating'.

The difference between the first mode of the
corrected FE model and the first test frequency is
now only 8Hz with a MAC value of 0.80.
However, this corrected FE model is only valid in
the frequency range around the first FE modal
frequency.

The drawback of this method however is that
the results are not physically relevant nor
interpretable since the individual stiffness matrix
elements can alter without any relation to the
physical model from which they originate.

5.2. MSC/NASTRAN So0l200 updating.

The updating parameters in this case are physical
variables. These parameters are directly related to
shell properties (shell thickness as design
variable), beam properties (cross section as design
variable) or other FE property cards. This
approach offers thus more of an insight into what
modelling errors have been made rather then just
their location.

Since the original input deck contained only 2
shell property cards and thus only two design
parameters, a very low spatial distribution for
updating is available. Therefore, the input deck
was modified to obtain more property cards, see
Fig. 2, this of course without changing the
dynamic behaviour of the structure. For each of

these property cards, the shell thickness is used as
design variable. The possible evolution of the
numerical value of these wvariables has been
constrained between 50% and 150% of the initial
value. The residues are in this case the differences
between analytical and experimental modal
frequencies and the full mode pair table is taken
into account.

The optimisation problem is translated
into an MSC/NASTRAN SOL200 optimisation
problem, see equation 3. The objective function is
solved in an iterative way using a Bayesian
parameter estimation technique.

W, e} - [s]{dp}f
3)

The outcome of this optimisation analysis
contains the parameter evolution, the updated
thickness values and the modes of the ‘corrected’
finite element model. The ‘optimal’ solution
using this approach is reached by increasing the
thickness of the shell elements on the base and
decreasing the thickness of the elements around
the welded joints, see Fig. 9.

Figure 9 : Parameter changes after 'Sol200" updating.

This result points directly to poor weld
penetration and to the modelling of the solid base
by means of shells. This is a valuable insight into
not only where the modelling error is but also
what the error is. This new FE model is valid in
the frequency bandwidth between 0-750Hz.

A new correlation analysis results in the following
mode pair table, see Table 3. The mode switch
disappeared, and the frequency differences are
minimised, including the first pair of
corresponding modes. The MAC values are
somewhat lower than in the case of the ‘Link
Solver’.



520.91 | 518.98 | -1.92 | -0.37 | 0.71 0.62

EMA | FEM f| Diff Diff MAC MAC 690.98 | 692.42 | 144 [ 0.21 0.74 0.58
f. Hz Hz Hz (%) before after . , o
Test/Fe | Test/Fe Table 3 : Mode pair table after 'Sol200 updating’.

186.41 | 188.13 | 1.72 0.92 0.80 0.80
330.04 | 329.85 | -0.19 | -0.06 | 0.86 0.82
360.58 [ 359.15 | -1.43 | -0.40 | 0.81 0.88
371.51 | 367.94 | -3.57 | -0.96 [ 0.68 0.71
385.95 | 388.26 | 2.31 0.60 0.98 0.95

6. Conclusions.

The updating process was illustrated in this paper on a small frame structure. The outcome of the initial
dynamic correlation was sufficiently high to proceed with an automatic updating procedure. Although we
already knew in advance the possible problem zones of this support frame, the updating was based on a
straightforward spatial subdivision of the model. Two approaches were used, namely the Link Solver and
the MSC/NASTRAN SOL200 optimizer. Both solvers achieved to tackle the mode switch and the
frequency differences between the analytical and the experimental resonance frequencies with success,
and the thickness of the base and the welded joints were identified as ‘hot spots’. The Sol200 approach
has the advantage that it yields physically relevant and interpretable results and thus offers more of an
insight into not only where the modeling error is but also what the error is. Using this information, the
engineer can choose whether he uses this information to re-model (in this case) the welding or to
proceed with this ‘updated’ FE model.

A second step in the analysis could be to launch an optimization wherein only the shell thickness of the
elements around the welded joints (remember the welding is NOT modeled in this case) is subject to
change, in order to include the effect of the welding in the FE model. In this case, Sol200 updating is
rather used to tackle specific modeling (design) issues on a detailed level of the structure.

The fact that “‘updating’ in this case is used on a relatively small structure does not exclude its usefulness
for larger structures, since the modeling issues are concentrated mainly on detailed level.
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