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A b s t r a c t

The subject of this research is numerical modelling of single pass light transmission

through a general optical component subjected to thermal and structural loads. The

light transmission is calculated numerically for an FE model considering both the

thermal effect on the refractive index, and the structural distortions of the optical

component. The thermal and the structural analyses of the optical component model

are computed using the MSC/NASTRAN FE software.

The results of the MSC/NASTRAN  FE analyses are used as input to the light

transmission analysis ‘IMU-POST’ .

The output light beam is analysed with respect to wave-front deviation and distortion.

1. Introduction

There is a wide range of technological problems in optics and electro-optics

which require  investigation of the influence of thermal fields and structural

distortions.

Highly sophisticated computer programs have been widely used for

geometric ray tracing, lens design and images modelling. However, none of

the existing packages takes into account the influence of non-uniform

thermal fields and structural stresses on light propagation through an

optical element which is sensitive to the above-mentioned factors.



The significance of ‘IMU-POST’  to this problem lies in the fact that it takes

into account both the physical distortion of the optical element, and the

thermal effect on refractive index. It is shown that the wave-front

perturbations and the thermal focusing effect are significant although the

temperature gradients are apparently small. Applying ‘IMU-POST’ improve

the accuracy of the results by 30% to 80% depending on the material .

The software uses the flexibility and accuracy of the FE method to directly

investigate the influence of the thermal and structural loads on the

properties of an optical element.

The program uses a MSC/NASTRAN model so that the approach does not

require an analytical description of the problem, but rather uses FE

geometry as input.

The software can be used for GRIN optical elements and will take into

account both types of refractive index variation: thermal variation, and the

initial optical non-homogeneity of the  material.

The proposed algorithm and software provide highly precise simulations.

This was verified by numerous comparisons with solutions that were

obtained both in numerical form using commercial optical design software

results and with analytical results.

The results of the calculations represent a wide range of  beam parameters

including : Thermal focusing (or defocusing)   and wave-front characteristics.

The algorithm and software can be adapted to take into account additional

effects such as refractive index dependence on mechanical stress.

The software can easily be interfaced to existing software for computerised

design and optimisation of optical devices.

2. Program description

The input for the IMU software program is the MSC/NASTRAN model, the

thermal results and deformation results (Punch NASTRAN results), the

analysis can be linear or non-linear for both thermal and structural analyses

.

The transmitted light wave is calculated numerically for the FE model considering the



temperature effect on the refractive index , wavelength  and the structural

distortions of the optical component.

Program output consists of: the optical path difference (OPD) the divergence

of the light beam , the new focal position of the optical element , and wave-

front description in terms of Zernike polynomial constants for use with

standard optical design programs.

The software is available for IBM PC 486 or Pentium microcomputers. Its

requirements for RAM and space on the hard disk are met by most standard

computers of this type.

3. Basic equation

The spatial configuration of the single ray transmission through a medium

with refraction index  n x y z( , , )  can be described by equations [1]:
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where s  is the natural coordinate measured along the ray.

The components of the ray direction vector are determined by first order

derivatives:   vx  =  
dx

ds
,    v y  = 

dy

ds
,    vz  =  

dz

ds
;

Although there is no general solution for these equations , it is  known that

the curvature of the trace at each point is proportional to the module of

gradient of ln( )n .

4. Calculation algorithm

The proposed numerical algorithm for creation of a spatial curve related to

general equations (1) with prescribed starting point and initial direction

consists of the following :

It is assumed that the ray trace is chosen as close as possible to the x1  axis

of the basic coordinate system, thus the variable x1  is designated as the

major coordinate.

At each incremental step along the ray, of length ∆s , the basic coordinates



obtain increments ∆x ii , , ,= 12 3 in accordance with a parabolic dependence
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and this increment of natural coordinate determines the second and third

components of the end point, relating to a new value of arc length s s s= +0 ∆ :
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 5.  Refractive index calculation

The element is considered as a thermally sensitive material.

The values of refractive index as a function of wave length and temperature

are obtained based on the formula: [ ref. 3]
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temperatures are measured in ϒC , λ   is wavelength in microns,

 6.  Finite Element Formulation

A six-faced eight-nodal solid finite element of type CHEXA was used for

presentation of the optical element in a format acceptable for

MSC/NASTRAN software application.

The area Inside the single element  is defined by basic Cartesian variables

x y z, , and by element coordinates ξ η ζ, , , which are mapped onto a

standard interval [-1 ,1]. The relationship of basic coordinates to element

coordinates is  given by
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where  ξ η ζi i i, ,   and  ( )x y z ii i i, , ...= 1 8     are  coordinates of i-th node  in

the element and basic systems respectively,
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Similar to (eq. 1)  the dependencies of refraction index on temperatures  are

assumed. The properties for calculation of the values    ( )n P   and  ( )T P    are



known in the current point   ( )P x y z, ,  and are  considered in the finite

element having element coordinates  ξ η ζ, , :
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 where  ni   and   Ti    are nodal  values of these functions..

The partial derivatives of the scalar function n P( )   with respect to basic

coordinates were calculated as
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which is an important component in the calculation of the vector   grad n .  It

is the major factor in the numerical ray tracing.



7. Sample problem

A cube shaped optical element made of BK7 glass is subjected to regulated

heating on one cube face. On the other faces there are both radiative and

convective heat transfer .

In the first stage, the temperature distribution within the optical element is

calculated as a function of time using NASTRAN (see Fig 1) .

Temperature results (MSC/NASTRAN) [°K]
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Fig 1 :MSC/PATRAN plot   for time step 20

The second stage consist of the  simulation of the deformation on the same

model using the temperatures calculated in the first stage, with appropriate

boundary condition and loads  (see Fig 2) .



Deformation results (MSC/NASTRAN) [mm]
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Fig 2 : MSC/PATRAN plot   for time step 20

The “IMU-POST” software uses a NASTRAN model , the temperature

simulation punch file results, the deformation punch file results and the

optical properties of the glass to calculate: the OPD (see Fig 3 ), the average

direction angle (grad), OPD standard deviation, focal point coordinates, and

the Zernike coefficients.

Data for BK7 optical glass: [3]

temperatures are measured in ϒC , λ   is wavelength in microns,
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E E0
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104 34 10 627 10= ? = ?− −. , . .



Program output:

(IMU POST) United Table of Ray Tracing Results   20-th step

 Range of OPL (mm): [ 15.15327522 15.15349657]

 Full difference (mm):    .00022135

 Additive component of OPL (mm)  15.15275400 (=   23938 wl)

 Full OPD interval (wl): [    .82341   1.17310]

 Optical Paths Differences (wl):

XY

Z

1.173

1.150

1.126

1.103

1.080

1.057

1.033

1.010

.9866

.9633

.9400

.9167

.8933

.8700

.8467

.8234
  default_Fringe :
Max 1.173 @Elm 348.3
Min .8234 @Elm 237.3

Z

OPD - step 20

Fig 3 : MSC/PATRAN plot   for time step 20

Average value of relative OPD:    .95989993

 Standard deviation:   5.2356E-03

 Parameters of thermal perturbation of rays:

 Range of  y-components (mm): [ -2.0261E-06  2.0261E-06]

          z-components (mm): [ -5.8103E-05 -1.3135E-05]

 Average direction: vy   .000000 vz  -.000035      Angle (grad):    .0020

 Standard deviations: vy   6.3793E-08  vz   6.6655E-07



 "Focal distance" from exit plane (mm)  -1.5192E+05

 Coordinates of "Focal point" (mm):  y=  3.4292E-07  z=  1.0287E+01

 Zernike coefficients:

   1:  9.606795E-01   2: -1.922650E-01   3:  6.340066E-09   4:  1.895258E-02

   5:  3.131207E-02   6: -7.669243E-10   7: -2.093297E-04   8: -3.842073E-10

   9: -4.900679E-04  10: -7.738388E-04  11:  5.225382E-09  12: -5.879597E-04

  13: -1.362501E-10  14: -1.938652E-04  15: -2.210750E-09  16:  3.701356E-05

  17: -2.711043E-04  18:  3.211257E-09  19: -4.639226E-05  20:  4.026580E-09

  21:  1.221731E-04  22:  6.442737E-09  23:  8.665901E-05  24:  7.096137E-09

  25: -2.786541E-05  26: -7.211061E-05  27: -2.011191E-09  28: -2.420623E-04

  29:  4.513378E-10  30: -1.825242E-04  31:  3.249907E-09  32:  1.461972E-04

  33:  1.148000E-11  34: -4.504286E-05  35:  8.772098E-09  36:  3.337472E-05

 Residuals:           max deviation  2.64405381E-04

                 standard deviation  9.69335267E-05

 Full range of Zernike approximation (wl): [    8.159624E-01    1.203365E+00]
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