
1

Efficient Calculation of Transverse Stresses in Composite Plates

Raimund Rolfes*, Ahmed K. Noor**, Klaus Rohwer*

*Institute of Structural Mechanics, DLR, Braunschweig, Germany
**Center for Advanced Computational Technology, University of Virginia,

NASA Langley Research Center, Hampton, VA

ABSTRACT

Transverse stresses play an important role in the onset and growth of damage in
composite structures. A post-processing method is presented which provides transverse
shear and normal stresses in composite plates subjected to mechanical and thermal
loads. The analytical formulation is based on the first-oder shear deformation theory and
the plate is descretized by using a single-field displacement finite element model. The
procedure is based on neglecting the derivatives of the in-plane forces and the twisting
moments, as well as the mixed derivatives of the bending moments, with respect to the
in-plane coordinates. The method is easily adapted to commercial FE-codes like
MSC/NASTRAN.
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1 Introduction

Fiber composite technology offers a very significant potential for weight saving of many
aerospace structures. That´s why it is increasingly used by aerospace industry and
replaces conventional metallic structures. An illustrative example is the outer wing for
the Airbus A3XX which is currently under development in Germany. However, there are
still some important obstacles remaining which prevent the technology from even faster
spreading into the market.

Possibly the most important one is the very complicated failure behaviour of these
inhomogeneous and anisotropic structures. It has been analytically tackled by the so-
called damage mechanics of composites which was originally destined to provide a
counterpart to the well-developed fracture mechanics for metallic materials. Due to the
complicated interaction of different damage mechanisms, e.g. fiber-matrix debonding,
matrix cracking, fibre cracking, delamination etc., no generally applicable methods for
the prediction of damage progression and of residual life time could be established so
far.

Even the onset of failure is insufficiently described by most of the failure criteria which
are implemented into common finite element (FE) packages. Presently, MSC/NASTRAN
offers the criteria of Hill, Hoffman, Tsai-Wu and the maximum strain method. The first
three do not distinguish between fiber and matrix breakage. However, this information is
very important since many kinds of matrix cracks are tolerable whereas rupture of fibers
can cause immediate breakdown of the whole structure. Moreover, all of the the
aforementioned methods base on the assumption of a plane state of stress. In thin-
walled structures the transverse stresses are clearly much smaller than the in-plane
stresses. Nevertheless, they can decisively influence the onset and growth of
delaminations. Therefore, modern failure criteria (see e.g. [ 1], [ 2]) which account for all
six stress components should be implemented into MSC/NASTRAN.

In order to provide the required input data for such an improved failure prediction an
efficient method for calculating transverse stresses in composite structures must be
developed. Various techniques have been proposed for the accurate determination of
transverse stresses in laminated composites. These include using 1) three-dimensional,
or quasi-three-dimensional finite elements (see, for example [ 3], [ 4], [ 5], [ 6]); 2) two-
dimensional finite elements based on higher-order shear deformation theories with
either nonlinear or piecewise linear approximations for the displacements in thickness
direction (see, for example, [ 7], [ 8], [ 9]); and 3) post-processing techniques used in
conjunction with two-dimensional finite elements based on the classical or first-order
shear deformation theory (with linear displacement approximation through the thickness
of the entire laminate).

Experience with most of the three-dimensional finite elements and two-dimensional
finite elements based on higher-order shear deformation theories, has shown that
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unless the three-dimensional equilibrium equations are used in evaluating the thickness
distribution of the transverse stresses, the resulting stresses are inaccurate (see, for
example, [ 8], [ 10], [ 11], [ 12], [ 13]). Since the finite element models based on the first-
order shear deformation theory are considerably less expensive than those based on
three-dimensional and higher-order two-dimensional theories, their use in conjunction
with post-processing techniques has received increasing attention in recent years. The
post-processing techniques proposed for the evaluation of transverse stresses are
based on the use of a) three-dimensional equilibrium equations (see [ 12], [ 14], [ 15], [
16]); b) predictor-corrector approaches (see [ 17]) and c) use of simplifying assumptions
([ 18], [ 19]).

Except for Noor et al. [ 16] which considered only transverse shear stresses, none of the
cited references considered transverse stresses in thermally loaded laminates. The
present study focuses on the accurate evaluation of both transverse shear and
transverse normal stresses, in composite panels subjected to mechanical and thermal
loads. The post-processing technique, based on the use of simplifying assumptions and
presented in [ 18] and [ 19] is extended herein to the case of thermal stresses. The
effectiveness of the proposed procedure is demonstrated by means of numerical
examples of cross-ply panels.

2 Theory

Basic Idea

The present method has in common with other postprocessing techniques (e.g. [ 12], [
14], [ 15], [ 16]), the use of three-dimensional equilibrium conditions to calculate the
transverse stresses using the derivatives of the in-plane stresses. However, in
contradistinction to other approaches the transverse shear stresses are expressed by
the shear forces and the first derivatives of the temperature field with respect to the in-
plane coordinates only. This results in saving one order of differentiation of the shape
functions compared to other methods. The idea goes back to Rohwer [ 20] who
introduced the following two simplifying:

1) the effect of the in-plane stress resultants on the transverse shear stresses is
neglected, and

2) a cylindrical bending mode is assumed in each direction

Because of the reduction in the order of differentiation, the present method can, in many
cases, provide a good approximation of the transverse normal stress using only eight-
noded finite elements.
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Transverse Shear Stresses

The FSDT bases on the subsequent assumptions:

1) The laminates are composed of a number of perfectly bonded layers

2) The strains are linear in the thickness direction, i.e.

κεε 3
0 x+= ( 1)

where 0ε  and κ  are the extensional strains and curvature changes of the middle

surface and x3 is the thickness coordinate.

3) Every point of the laminate is assumed to possess a single plane of thermoelastic
symmetry parallel to the middle plane (monoclinic symmetry).

4) The material properties are independent of the temperature.

5) The in-plane stresses mσ  and strains ε  are related by the plane stress constitutive

relation

( )TCm ∆αεσ −= ( 2)

where C  is the plane-stress stiffness matrix, α  is the vector of the coefficients of
thermal expansion, and T∆  is the temperature change.

It is worthwile to note that the stiffness matrix C  has been derived under the assumption

of vanishing transverse normal stress. Nevertheless, this stress component will be
evaluated later on by use of 3D equilibrium conditions.

Introducing Eq. ( 1) into Eq. ( 2) results in

( )TxC 3
0

m ∆ακεσ −+= ( 3)

This is the standard equation for in-plane stress recovery which is usually implemented
into commercial FE-packages offering composite analysis on the basis of the FSDT.
The present methodology for calculating the full state of stress is based on the following
five sets of equations:

1) 3D Equilibrium Equations

02,121,113,13 =++ σσσ ( 4)

01,121,223,23 =++ σσσ ( 5)

03,332,231,13 =++ σσσ ( 6)
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2) Simplifying Assumptions

0,N =α ( 7)

0MMMM 2,121,121,222,11 ==== ( 8)

3) Material Law for Transverse Shear

γHQ = ( 9)

4) Equilibrium Conditions for the Laminate after Introduction of Simplifying
Assumptions

11,11 QM = ( 10)

22,22 QM = ( 11)

5) Thermoelastic Constitutive Relation for the Laminate
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N, Q and M are the extensional, transverse shear and bending stress resultants, and γ
constitutes the transverse shear strains, respectively. H, A, D and B are the transverse
shear, extensional, bending and bending-extensional coupling stiffness matrices of the
laminate, respectively. The conventional equilibrium approach (e.g. [ 12], [ 14], [ 15], [
16]) uses only the 3D equilibrium conditions (Eqs. ( 4)-( 6)). Introducing the stress
recovery equation ( 3) into the equlibrium conditions ( 4) and ( 5) and resolving with
respect to the transverse shear stresses yields
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Although a matrix formulation is adopted, the Einstein summation convention shall be
applied, and the range of the Greek subscripts is 1,2. αB  are the Boolean matrices
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Eq. ( 14) is used for the standard equilibrium approach. Although applicable to finite
elements, it has a major drawback. Regarding typical finite plate elements based on the
FSDT with five variables per node, equivalent shape functions are introduced for the
displacements (u0 , v0 , w) and the rotations (ϕx , ϕy). Then, the membrane strains and
curvatures need first derivatives of the shape functions for u0 , v0 , ϕx , ϕy , and,
consequently, second order derivatives are required for Eq. ( 14). Since one more
differentiation is necessary for the transverse normal stress calculation, at least cubic
shape functions must be chosen for u0 , v0 , ϕx , ϕy , if all derivatives shall be calculated
on the element level. This is shown in column 2 of Table 1.

Table 1. The requirements can be lowered to some extent if the influence of the
derivatives of the in-plane displacements u0 and v0 on the transverse normal stress is
neglected. Then, linear shape functions suffice for the in-plane displacements, whereas
cubic ones remain necessary for the rotations. This method can be denoted as a
reduced equilibrium approach and is indicated in column 3 of Table 1.

Table 1: Degree of polynomials required for the calculation of the transverse shear stresses and the
transverse normal stress (values in brackets) on element level

functional
dof´s

degree of polynomials required
for calculation of transverse
stresses
equilibrium method
based on eq. (4)

present
method

full reduced
u0 2 (3) 1 (1) 1 (1)
v0 2 (3) 1 (1) 1 (1)
w0 1 (1) 1 (1) 1 (2)
ϕx 2 (3) 2 (3) 1 (1)
ϕy 2 (3) 2 (3) 1 (1)

The authors suggest a method that puts significantly lower requirements on the
polynomial order of the shape functions (conf. column 4 of Table 1). The sequence of
calculation steps is as follows.

Firstly, the thermoelastic constitutive relation for the laminate (Eq. ( 12))is resolved with
respect to 0ε  and κ . This yields
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where 
~A , 

~B  and 
~D  are the compliance matrices of the panel (inverse of the panel

stiffness matrices). If the temperature has a linear variation through the thickness, i.e.

1
3

0 TxTT +=∆ ( 18)

the thermal stress resultants appear as
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Introducing Eq.´s ( 17) and ( 18) into Eq. ( 14) gives an expression for the transverse
shear stresses depending on the stress resultants and the temperature field,

( ) ( )( )1th0ththth ,Tb,Ta,N,NG,M,MFB ααααααατ +++++= ( 21)
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The quantities tha  and thb  are integrals over part of the laminate thickness of products

of material stiffnesses and coefficients of thermal expansion. Therefore, they can be
thought of as partial thermal stiffnesses. Now the simplifying assumptions (Eqs. ( 7) and
( 8)) are introduced. Then, the terms α,N  in Eq. ( 21) vanish and the remaining

derivatives of the bending stress resultants can be expressed by the transverse shear
forces (Eqs. ( 10) and ( 11)). One finally gets
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where f are the components of F multiplying the remaining derivatives of M, i.e.
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and Eq. ( 19) has been used. The material law for transverse shear (Eq. ( 9)) is used to
evaluate the transverse shear forces. Thus, the present procedure is not a pure
equilibrium method, but a mixture between material law and equilibrium approach.

Transverse Normal Stress

By using the third equilibrium condition the foregoing methodology can be applied to the
evaluation of the transverse normal stress, despite this stress component has been
neglected previously. Introducing Eq. ( 24) into Eq. ( 6) and resolving with respect to σ33

gives
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where
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It should be noted that the boundary conditions at the top and bottom surfaces are
automatically satisfied in the present procedure. This applies to the transverse shear as
well as to the transverse normal stresses and has been shown in [ 24].

3 Implementation

The present method is implemented into the finite element program B2000 and the
post-processor TRAVEST. B2000 is a common research tool for a number of
organizations, including NLR, CIRA, SMR, DLR and some universities in the Netherland
and Switzerland. Within B2000 a standard isoparametric eight node element with
reduced integration (2x2) is used. The same shape functions are used for interpolating
the temperature distribution. Since the evaluation of transverse stresses requires the
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first derivative of the transverse shear forces ( α,Q ) and the second derivatives of the

temperature field ( 0,T αβ , 1,T αβ ), then second order derivatives of the shape functions are

required. The derivatives can be evaluated using the procedure outlined in [ 11]. The
values for α,Q , 0,T αβ  and 1,T αβ  are input to the post-processor TRAVEST which

calculates all quantities that depend on the transverse coordinate 3x  only, i.e. the

matrices thththth B,A,b,a,F,G,f  and thD , and its integrals over 3x  which are denoted

by stars. These integrations are carried out analytically. Thus, no additional numerical
errors are introduced. If the material properties of each layer are uniform (i.e.,
independent of αx  and 3x ), the additional numerical effort is small since the

aforementioned matrices have to be evaluated only once. The multiplications with α,Q ,
0,T αβ  and 1,T αβ  (according to Eqs. ( 24) and ( 26) must be performed at each point where

the transverse stresses are required.

TRAVEST can also be used as a postprocessor to commercial finite element codes like
e.g. MSC/NASTRAN.

4 Numerical Examples

To assess the effectiveness of the foregoing postprocessing procedure for calculating
exact transverse stresses in composite plates several multilayered composite panels
were analyzed. The panels were subjected to transverse static loading or to a thermal
loading, in the form of either a constant temperature change or a temperature gradient
in the thickness direction. Typical results are presented herein for a ten-layered
symmetric cross-ply laminate ([0/90/0/90/0]sym) and a four-layered antisymmetric
laminate ([0/90/0/90]), with the fibers of the top layer parallel to the x1 axis. The first
laminate exhibits no bending-extensional coupling, and the second laminate shows a
strong coupling. Two aspect ratios were selected; namely, L2/L1 =1 and 2. Furthermore,
two different thickness ratios, h/L1 =0.05 and 0.1, were considered. Each of the
transverse loading, uniform temperature through the thickness, and the temperature
gradient through-the-thickness, had a double sinusoidal variation in the x1 - x2 plane.
The amplitudes of the trasnverse loading, uniform temperature and temperature
gradient ( p T T0 0 1, , ) were chosen to be one. The following boundary conditions, which

allow an exact three-dimensional solution to be obtained ([ 16], [ 17], [ 23]), were
selected:

u2 =0, w =0, ϕ2 =0, σ11 =0 at x1 =0, L1

u1 =0, w =0, ϕ1 =0, σ22 =0 at x2 =0, L2  .
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The three-dimensional solution was used as the standard for comparison. The material
properties of the individual layers were taken to be those typical of high-modulus fibrous
composites, namely:

EL / ET =15, GLT / ET =0.5, GTT / ET =0.3378, νLT =0.3, νTT =0.48
αL =0.139 x 10-6, αT =9 x 10-6

Typical results are shown in Figs. 1-3 for the transverse shear stresses and in Figs. 4
and 5 for the transverse normal stress. The results are discussed subsequently.

Effect of Laminate Parameters and Loading on the Magnitude and Distribution of
Transverse Stresses Through the Thickness

• The transverse shear and normal stresses produced by the transverse loading p
have a smooth variation in the thickness direction.

• The relative magnitudes of the transverse shear stresses, σ31, σ32 , and of the
transverse normal stress, σ33 , is strongly influenced by the aspect ratio of the
laminate. For square laminates, σ31 and σ32 have almost equal magnitudes, but
opposite signs, and σ33 is very small. On the other hand, for rectangular laminates,
the magnitudes of σ31 and σ32 are different and the ratio of max σ33 / max σ3β is larger
than that for square laminates (see Table 2).

Table 2: Accuracy of the Transverse Normal Stress Component σ33 for the Thermal Loading Cases
T0 and T1

Laminate Loading Bending

βσ
σ

3

33

max
max Accuracy of

33σ

n L2/L1

1 yes 2.5 10-3 poor
2 T0 yes 3.6 10-2 satisfactory

4 1 yes 1.5 10-2 good
2 T1 yes 7.0 10-2 excellent
1 no n.a. poor
2 T0 no n.a. poor

10 1 yes 5.8 10-4 poor
2 T1 yes 1.8 10-2 good

Accuracy of Transverse Shear Stresses

• For all the laminates considered, the accuracy of the transverse shear stresses, σ3βpredicted by the foregoing procedure, was at least satisfactory, often good or very
good. The accuracy was higher for the static loading case than for the thermal
loading cases.

• For the static loading case, the accuracy of σ
3β was insensitive to the thickness ratio
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• For rectangular plates, the larger transverse shear stresses are predicted more
accurately by the foregoing procedure than the smaller ones.

Accuracy of Transverse Normal Stress

• The accuracy of the transverse normal stress predicted by the foregoing procedure
is strongly dependent on the relative magnitude of the in-plane and bending stress
resultants (h N / M), and the relative magnitudes of σ33 and σ3β , which, in turn, are
dependent on the loading, the lamination and the geometric parameters of the panel
(see Table 2).

• For the static loading case, the accuracy of σ33 is, for all the panels considered,
excellent. The accuracy is insensitive to variations in both (h/L1) and (L2/L1).

• For the thermal loading cases, the accuracy of σ33 is satisfactory only when the ratio
(h N / M) is small and the ratio (max σ33 / max σ3β) is larger than 0.01. For the case
of uniform temperature through-the-thickness, the accuracy of σ33 is satisfactory for
rectangular four-layer laminates, and not satisfactory for all the other laminates
considered. For the case of temperature gradient through-the-thickness, the
accuracy of σ33 ranged from good to excellent, except for the square ten-layer
laminate, where σ33 was less than three orders of magnitude smaller than σ3β.
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Figure 1: Through-the-thickness distributions of transverse shear stresses ( 31σ at (L1,L2/2); 32σ at

(L1/2,L2)). Four-layer antisymmetric cross-ply laminate with L2/L1=1 subjected to a) static
loading p, b) uniform temperature T0, c) temperature gradient T1

Figure 2: Through-the-thickness distributions of transverse shear stresses ( 31σ at (L1,L2/2); 32σ at

(L1/2,L2)). Four-layer antisymmetric cross-ply laminate with L2/L1=2 subjected to a) static
loading p, b) uniform temperature T0, c) temperature gradient T1
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Figure 3: Through-the-thickness distributions of transverse shear stresses ( 31σ at (L1,L2/2); 32σ at

(L1/2,L2)). Ten-layer symmetric cross-ply laminate with L2/L1=1 subjected to a) static loading p,
b) uniform temperature T0, c) temperature gradient T1
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Figure 4: Through-the-thickness distribution of transverse normal stress 33σ at (L1/2,L2/2). Four-layer

antisymmetric cross-ply laminate subjected to a) static loading p, b) uniform temperature T0, c)
temperature gradient T1
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Figure 5: Through-the-thickness distribution of transverse normal stress 33σ at (L1/2,L2/2). Ten-layer

symmetric cross-ply laminate subjected to a) static loading p, b) uniform temperature T0, c)
temperature gradient T1
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