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ABSTRACT

As the International Space Station orbits around the earth, it goes through sunlight and the
shadow of the earth.  This causes temperature variations in the station as a function of time and
position.  The solar arrays are very sensitive to temperature variations and generate vibratory
motion which can lead to accelerations in the racks where even very small accelerations are a
concern.  One method of computing the rack accelerations is to first determine the solar array
base loads and then use transfer functions to obtain the rack accelerations.  Finite element codes
that allow thermal loads are meant for structures where support loads are generated from over
restraint.  These codes are not meant for  structures, such as solar arrays, where support loads are
due to inertia forces generated by thermal loading.

The purpose of this paper is to show a simple method of obtaining solar array base forces when
there is free thermal expansion.  In such a case, the boundary forces are primarily from inertia
forces and drag forces are simply negligible.  The inertia forces are a product of mass and
acceleration.  The acceleration is estimated from thermal displacements accurately computed by
MSC/NASTRAN.  The mode superposition approach using MSC/NASTRAN is used to include
any drag effect of damping and the influence of vibratory modes.  The net result is an efficient
process that gives reasonable results.
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INTRODUCTION

The International Space Station is an international joint venture with countries across the globe
participating.  It is a giant station which will operate in space, and mankind will use it for
research, commercial production and voyages to outer space.  When completed, it will be about
300 feet long.  There are eight large United States built solar arrays to convert heat energy to
electricity.  Each array weighs about 2400 lbs and is 1000 inches long and 300  inches wide.
Figure-1 shows a lower (incomplete) configuration.

The station will be used to conduct experiments, and there are specially built racks where
accelerations no greater than micro-g’s are desired.  But as the station orbits around the earth,
there is heating and cooling that generates vibrations.  Since the solar arrays have large surface
areas and very low frequencies, they are most susceptible to vibration arising from these
changing thermal gradients.

It should be noted that the only load path from a solar array to the rest of the station is through its
base which is treated as a single point.  So, if the loads at the base of the solar array are known,
then transfer functions can be used to compute the rack accelerations.

Based on engineering judgment, it can be said that a solar array fixed at its base and subjected to
transient thermal loads is a case of free thermal expansion and the forces and moments at the
base will be due to inertia forces.  As the solar array expands and contracts, points on the array
experience motion in the form of displacements, velocities and accelerations.  Since the solar
array is an assemblage of mass points, any acceleration of the mass points will generate forces
called inertia forces.  Since the coefficient of thermal expansion is very small, temperature
fluctuations experienced by the solar array, displayed in Figure 2, can generate very small forces.
The coefficient of thermal expansion, α, is typically on the order of 10-6 inch/inch.  For a solar
array of length 1000 inches and maximum temperature variation of about 200°F, maximum
deflections on the order of 10-1 inch can occur.  If the temperature variation occurs in about 240
seconds, the acceleration will be on the order of 10-5 inch/sec2.  For a solar array weighing 2400
lbs, the base  force due to inertia forces will be on the order of 10-5 lbs.

Even though these forces are small, the presence of eight solar arrays and the need to have rack
acceleration levels as low as 10-6 g, make it necessary to generate solar array base time histories
that can be used to estimate rack accelerations.  Therefore, there is a need for a method to
reasonably estimate the solar array base force/moment time histories.

The customary method for computing forces generated by thermal loads (temperatures) is to
create an equivalent force problem.  The equivalent grid forces are generated based on the
element (end) forces when the element is fixed at the boundary and a temperature load is applied.
Though the method gives the correct formulation for over-constrained problems, for free thermal
expansion problems the formulation is incorrect.

The subject of this paper is to present a simple yet reasonable method that will give base forces
and moments of the order expected.
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The mode superposition method is used to include the possible effect of drag forces and vibration
modes.  The drag forces are included through the use of viscous damping while the vibration
modes are included through the modeshapes.

The flowchart of the process is shown in Figure 3.  The heat transfer coefficients were obtained
using TRASYS1.  The temperature distribution was obtained using SINDA2.  The modal solution
was performed using MSC/NASTRAN3.  Mapping of the SINDA computed temperatures on to
the MSC/NASTRAN model was done using post-processors.  The non-linear geometric
stiffening of the arrays was considered to obtain the stiffness matrix.  Selection of modes was
done using a special Direct Matrix Abstraction Program (DMAP) as described by Bedrossian4.

METHODOLOGY

The methodology used to compute the PV Array base loads is shown in Figure 3 and consists of
seven steps:

Step-1: Compute heat transfer coefficients using TRASYS.

Step-2: Compute temperature distribution using SINDA.

Step-3: Map the temperature data on to the finite element model.

Step-4: Compute the grid displacements from thermal loads using MSC/NASTRAN Solution
101 with the PV Array fixed at base.

Step-5: Compute the accelerations at selected grid points from the displacements in Step-4.
Distribute the PV Array mass to the selected grid points.  Multiply the masses with the
accelerations to compute the external (inertia) forces.

Step-6: Using MSC/NASTRAN Solution 106 compute the stiffness matrix of the PV Array
fixed at the base with geometric stiffening and use it to compute the frequencies and
modeshapes.

Step-7: Using the frequencies and modeshapes of Step-6 and the force vectors of Step-5,
compute the PV Array base loads by the mode-superposition method of MSC/NASTRAN
Solution 112.

THEORY

(a) Obtaining Displacements

The thermal expansion of a line element is given by

( )δ α= L T∆ (1)
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where

L = length of element

α = coefficient of thermal expansion (linear)

∆T = temperature change

The equivalent end forces on a beam (equal and opposite in direction) to generate the same
deflection would be

( )F EA T= α ∆ (2)

where

E = modulus of elasticity

A = cross-section area

For plate elements the forces at the ends can be obtained in a similar manner.  By summing the
element end forces at a grid, a static load vector can be generated.  This force vector can be used
in the equations of motion.  The equations of motion of the solar array (or any finite element
model) are given in Meirovitch5 as

[ ]{ } [ ]{ } [ ]{ } ( ){ }m u c u k u f t&& &+ + = (3)

[m], [c] and [k] are the mass, stiffness and damping matrices respectively.  { }u , { }&u  and

{ }&&u represent the generalized displacements, velocities and accelerations at the physical degrees

of freedom and { }f t( )  represents the generalized forces at the physical degrees of freedom.

MSC/NASTRAN solution 101 can compute the thermal displacements which can be used to
compute inertia forces.

(b) Obtaining Inertia forces

The displacement, δ , and velocity, &δ , of a particle (mass point) assuming constant acceleration
is given by

δ δ δ= +& &&
0

1
2

2t t (4)

& & &&δ δ δ= +0 t (5)

where

&δ0 = initial velocity

&&δ = acceleration
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t = time

From (4) one can write

( )&&
&

δ
δ δ

=
−2 0

2

t

t
(6)

Therefore, the inertia force on the particle is given by

( ) ( )
f t

m t

t
=

−2 0

2

δ δ&
(7)

(c) Obtaining Boundary Forces

The eigenvectors of an undamped free (no force) system can be used to generate an eigenvector
matrix [ ]Φ .  For linear systems,

{ } [ ]{ }u = Φ η

{ } [ ]{ }& &u = Φ η (8)

{ } [ ]{ }&& &&u = Φ η

Then, by replacing { }u , { }&u  and { }&&u in (3) by the right hand sides of (8) and pre-multiplying

both sides by [ ]Φ T  as in Cook6 gives,

[ ]{ } [ ]{ } [ ]{ } ( ){ }M C K F&& &η η η+ + = t (9)

where [ ]M , [ ]C and [ ]K are the system modal mass, stiffness and damping matrices.  { }η  is the

generalized (modal) displacement vector and ( ){ }F t  is the modal load vector.

[ ] [ ] [ ][ ]M mT= Φ Φ

[ ] [ ] [ ][ ]K kT= Φ Φ (10)

[ ] [ ] [ ][ ]C cT= Φ Φ

( ){ } [ ] ( ){ }F t f tT= Φ

Equations in (9) can be solved to obtain the displacements and the base force.
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SOFTWARE USED

The following software were used in the analysis:

- MSC/NASTRAN (Version 68.2) finite element program developed by the MacNeal-
Schwendler Corporation.

- THERMAL : a FORTRAN code for generating load vectors

- TRASYS: A computer code to compute thermal coefficients

- SINDA: A thermal code to compute temperature distribution

UNITS USED

The following units were used:

- unit of mass is lbs
- unit of length is inches
- unit of time is secs.
- unit of temperature is degrees Fahrenheit

For consistency in units, mass units were internally converted to lb-sec-sec/in by
MSC/NASTRAN.

ASSUMPTIONS, APPROXIMATIONS AND SIMPLIFICATIONS

Several assumptions, simplifications and approximations were made in this analysis as is
common in most structural analysis.

(1) All vibration modes were assumed to have 1% viscous (modal) damping as is customary in
such analysis.

(2) From the temperature variations as a function of time in Figures 4 and 5, it is clear that high
frequency modes will not have any contribution.  Therefore, only vibration modes below 10.0 Hz
were used in the computation of PV Array base loads.

(3) For simplicity the mass of the PV Array was lumped at selected grids.  This would introduce
some uncertainty.  It was assumed that:

Mast weighs:  800 Lbs
Canister weighs: 200 Lbs
Blanket Weighs: 400 Lbs each
Bottom Cover weighs: 400 Lbs
Top Cover weighs: 200 Lbs
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(4) It was assumed that the initial velocity when temperature begins to change (i.e. &δ0  in
equation (7)) is zero.  If the temperature had peaked (maximum or minimum) at the initial
condition, then this assumption would give smaller inertia forces.  If the temperature had not
peaked at the initial condition, then this assumption would give larger inertia forces.

(5) For simplicity, the temperature distribution in an  element was simplified (linearized) so that
it can be represented as varying linearly.  This justified computation of inertia force vectors only
at a few time points.

(6) For simplicity, the weight of the solar array was lumped at only at a few grids.  This justified
computation of inertia forces only at a few grids as only lower order vibration modes were
assumed to participate.

CASE STUDY

Two cases were considered.  Case-1 is that of no shadow.  Case-2 is that for a moving shadow
(possibly generated by the EPS radiator).  The temperature variation in each case of a typical
mast grid (Node 8351) and a typical array grid (node 511) are shown in Figures 4 and 5.  The
temperature distribution for Case-1 is from Reference 3 while that for Case-2 is from Reference
4.

It is obvious from Figures 4 and 5 that the maximum temperature change occurs during day-night
transition. Therefore, the maximum PV Array base loads are  expected to occur during the
transition periods.

Also of interest is the daily variation of the PV Array base load (for Case-1).

RESULTS, CONCLUSIONS AND IMPORTANT REMARKS

The peak loads are shown in Table 1.  Note, that the unit of force is lb and that for moments is in-
lb.  For the short duration excitation (sudden change of  temperature), a computation time step of
.025 second was used.  For the long duration excitation (daily change of temperature), a
computation time step of 1.0 second was used.  The loads are in the basic coordinate system.

The forces are very small.  This is because acceleration from free thermal expansion is very small
giving very small inertia forces.  The moments are somewhat higher because of the large moment
arms associated with the inertia forces.  The response is the superposition of the individual
contribution due to each mode.  Again, a mode will participate only if the loading is such as to
excite it.  If the loading (temperature distribution) is perfectly symmetric about the PV Array
axis, the Fy force and Mx and Mz moments at the base of the solar array will be zero.  Non-zero Fy

for the case of ‘no-shadow sudden’ indicates unsymmetric temperature distribution.  The in-
plane (unsymmetric) vibration modes have low  frequencies and get excited making Fy larger
than Fx.  This also explains why Mz is large for this case.
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The beta angle defining the orientation of the solar angle was 0° for the case of no shadow and
65° for the case of shadow.  Though the magnitude of the loads is expected to change with beta
angle, still the loads would be very small.

The analysis performed here has scope for improvement.  The actual initial velocity in place of
zero can be used when the initial velocity is known, as in the case of long term (daily) change of
temperature.  Also, the actual temperature distribution, in place of the assumed temperature
distribution, can be used to generate the load vectors.  These two improvements would make a
difference in the PV Array base loads for long term (daily) change of temperature.

Ideally, the displacement, velocity and acceleration from equations (4), (5) and (6) should match
those from equations (8).  Therefore, some iterative technique can be developed to satisfy this
requirement.  This could be part of further  studies in this area.
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TABLE -1
PEAK BASE LOADS

Component No-Shadow
Sudden

No-Shadow
Daily

Shadow
Sudden

Fx (lb) 1.9E-6 6.3E-7 1.7E-6

Fy (lb) 1.5E-4 5.9E-5 5.4E-6

Fz (lb) 1.3E-5 3.2E-5 4.8E-5

Mx (in-lb) 1.4E-1 5.9E-2 5.3E-3

My (in-lb) 1.9E-3 5.5E-4 6.4E-4

Mz (in-lb) 1.8E-3 6.6E-4 1.2E-4
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FIGURE-2: DEPLOYED SOLAR ARRAY



12



13

FIGURE-4: NO SHADOW TEMPERATURE LOADS (TYPICAL)
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FIGURE-5: SHADOW TEMPERATURE LOADS (TYPICAL)


