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ABSTRACT

Due to the inherent uncertainties or variabilities in loads, materials and manufacturing

quality, variabilities are unavoidable in structural responses.  To ensure the reliability of a

structure, these uncertainties or variabilities must be considered during structural design.

Through a simple cantilever box beam example, the concepts and practices of three

design methodologies: deterministic design, reliability-based design, and robust design,

are examined in this paper.  Particular attention is given to the meaning of robust design

and its definition in the context of reliability-based design. Several robustness criteria are

studied and proposed in an attempt to search for a proper objective function in a

reliability-based design framework.  The stress analysis is carried out using both MSC/

NASTRAN and an analytical formula.
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INTRODUCTION

Uncertainties or variabilities exist in loading, material properties, geometry and other
aspects of any structure.  Such uncertainties may be classified as reducible or irreducible.
Reducible uncertainties are usually caused by lack of data, modeling simplifications,
human errors, etc., and can be reduced through, among other things, collecting more data,
better understanding of the problem, more strict quality control.  Irreducible uncertainties
are caused by phenomenon of a random nature and can not be reduced by possession of
more knowledge or data.

Because of the existence of such uncertainties in the life cycle of a structure the structural
response and life also show scatter.  To design structures that can perform their intended
function with desired confidence, the uncertainties involved must be taken into account.
The traditional way of dealing with the uncertainties is to use conservative values of the
uncertain quantities and/or safety factors in the framework of deterministic design.  A
more rigorous treatment of the uncertainties can be found in reliability-based design
philosophies that have been under development for the last half of a century and are
gaining more and more momentum.  More recently, the concept of “robust design” has
become very popular [1].  However, there is no universal agreement as to the meaning of
“robustness,” let alone a quantifiable criterion.  Is it an entirely new design philosophy or
is it part of reliability-based design?  Can reliability-based design be replaced by robust
design?  What are the advantages and disadvantages of each of these design
methodologies?  This paper investigates these questions by designing a simple cantilever
beam with all three methods.

To facilitate the analysis, a general purpose reliability-based analysis computer program,
PRODUCTS (PRobabilistic Optimum Design Under ConstrainTS) [2], has been used for
this study.  PRODUCTS integrates a probabilistic analysis module, FPI [3], an optimizer,
and MSC/NASTRAN for structural reliability-based design.  The DSA (Design
Sensitivity Analysis) capability [4] in MSC/NASTRAN is used to accelerate the
probabilistic analysis process.  Work is currently ongoing to verify PRODUCTS with
both small and large FE models.  As one of the verification examples, the example
problem used in this paper has been solved by PRODUCTS using both an analytical
solution and MSC/NASTRAN.  The resulting designs are very close.

The example problem will be described in the next section.  Then, it is designed using a
deterministic design method, a reliability-based design method and a robust design
method.  These designs will be compared and analyzed, and some observation made at
the end of the paper.

DESIGN OF A CANTILEVER BEAM

Figure 1 shows the cantilever beam with a rectangular cross-section subjected to a
vertical load, Py, and a horizontal load, Px, at the tip.  The design objective is to prevent
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yielding due to bending stress while keeping the weight of the beam low, i.e.  to design
cross-sectional dimensions, w, h, and t such that
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where R is the yield strength and S the maximum bending stress.  Assume that there are
scatters in Px, Py, and R, and they follow normal distributions with the following
parameters:

Table 1:   Statistics of Loads and Material Properties
Px (lbf) Py (lbf) R (psi)

Mean 500 1000 40,000
Standard Deviation 150 50 2,000

It is assumed that the manufacturing tolerances on the cross-sectional width, height and
wall thickness are relatively small and, therefore, the dimensions will be treated as
deterministic design variables.

Figure 1:  The Cantilever Beam (with the Finite Element Mesh)

DETERMINISTIC DESIGN (Design 1)

Depending on the discipline and design code adopted, different methodologies can be
used.  What is used here is the 95th percentile value for the loads and 5th percentile value
for the material properties.  That is,

Px = 500 + 1.645 x 150 = 746.75 lbf
Py = 1000 + 1.645 x 50 = 1082.25 lbf
R  =  40000 - 1.645 x 2000 =  36710.0 lbf

Using these values, the design with minimum weight can be obtained by solving the
following optimization problem:
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Note that since the beam length and density are constant, using the cross-sectional area as
the objective function will yield the same answer as using the weight as the objective
function.

Equation (2) is a typical nonlinear programming problem, and is here solved using
PRODUCTS. The g-function is calculated using Eq. (1) as well as MSC/NASTRAN with
6 beam elements. The final design is listed in Column 2 of Table 2.

Table 2:  Results of Different Design
     Designs (Design 1)

Determ.
Design
95% rule

(Design 2)

Min: Weight
S.t.: β ≥ 3

(Design 3)
Min: Σ(dβi)

2

S.T.  β ≥ 3
  weight ≤  3
coeff. set 1

(Design 4)
Min: Σ(dβi)

2

S.T.  β ≥ 3
  weight ≤  3
coeff. set 2

w 6.387 7.030 4.352 10.000
h 7.267 6.909 10.000 4.633
t 0.100 0.100 0.106 0.104

Safety Index 2.591 3.000 2.993 2.987
Area 2.691 2.748 2.998 3.000

Weighted total
sensitivity (all wi’s=1)

21.56 17.80 13.09 23.88

Weighted total
sensitivity (w1~w3=0)

0.520 0.490 0.601 0.404

(µPx/β)(dβ/dµPx) -1.049 -0.880 -0.959 -0.781
(µPy/β)(dβ/dµPy) -1.962 -1.777 -1.217 -2.371
(µR/β)(dβ/dµR) 4.011 3.658 3.176 4.152
(σPx/β)(dβ/dσPx) -0.665 -0.628 -0.741 -0.490
(σPy/β)(dβ/dσPy) -0.065 -0.071 -0.033 -0.125
(σR/β)(dβ/dσR) -0.270 -0.301 -0.226 -0.385

µg 9971.7 10936 12596 9633.5
σg 3848.7 3645.5 4208.8 3225.0

RELIABILITY-BASED DESIGN (Design 2)

In reliability-based design, g in Eq. (1) is called the limit state function or failure function.
g = 0 divides the design space into two regions, the safety region (g>0) and the failure
region (g<0).  Because of the uncertainties in loads and yield strength, g is a random
variable itself.  As a result, we can not be certain in advance whether g falls into the safe
region or the failure region for an arbitrary beam to be manufactured.  We can only hope
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that the beam is designed such that the probability that g is positive is sufficiently high.
In mathematical terms, this is expressed as:

              Reliability  Prob [ ]  Target Reliability≡ > ≥g 0        (3)

In engineering practice, the safety index, β, instead of structural reliability is often used to
represent the reliability level.  When g has a normal distribution, β has a one-to-one
correspondence with the structural reliability, given by

              β
µ
σ

= − − =−Φ 1 1( )Reliability g

g

       (4)

where µg and σg are the mean and standard deviation of the g-function and Φ  is the
cumulative distribution function for the standard normal distribution.  In the case where g
has other distributions, Eq. (4) is not valid, but in general a larger β corresponds to a
higher reliability level.

Depending on the goal of the design, different formulations can be used to achieve the
design objective.  For example, if the goal is to achieve maximum reliability as long as
the weight is within some bounds, the design requirement can be expressed as:
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If the concern is with the weight, the design can be formulated as:
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The selection of a target safety index, βΤ , is problem dependent and often controversial.
A commonly used value is 3, corresponding to, for a normally distributed g, a reliability
of 0.99865 or a probability of failure of 0.00135.

Equation (6) is used in this study to design the beam.  The β value is computed using Eq.
(4) for a given design. Again, Eq. (6) is solved using PRODUCTS, and the final design is
given in Column 3 of Table 2.  Note that in the case where g is not a normal random
variable β can be computed using a probabilistic analysis method [5].
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ROBUST DESIGN (Design 3 & 4)

Recently, “robust design” has become a popular design philosophy among major
manufacturers. Unfortunately, there are many different opinions as to the meaning of
robust design. A commonly used definition states that a robust design is a design that is
insensitive (or less sensitive) to input variations.  In other words, the best design is one
which performs as expected in the face of both expected and unexpected variations; and it
does so by virtue of the fact that the design is inherently insensitive to changes in the
design parameters and service environment.  Based on this definition, regions in the
design space should be sought where the sensitivity of the important response quantities
with respect to the key input variables is low (or ideally zero).  While it is an attractive
and powerful design concept, in practice it may be difficult (if not impossible) to achieve.
For example, designs that are insensitive to all variations may be overly conservative and
costly.  Also, it should be remembered that designs which are not sensitive to key random
variables cannot be “improved” by making changes to the mean values of those variables.
This design characteristic may, in fact, be undesirable in many situations.

In practice, what we are really concerned with is making sure that expected variations do
not result in unacceptable performance; and among such designs the most desirable
design is the one that is least sensitive to unexpected variation caused, for instance, by
unintended use of the product or lack of knowledge of the uncertainties.  Therefore, a
more practical definition for robustness may be that a robust design is a design whose
performance is not unacceptably compromised by expected variations in parameters
which are known to effect its performance, and is more tolerant to unexpected variations.

Both robust design and reliability-based design try to deal with uncertainties. Their
differences and similarities are difficult and probably unnecessary to describe, since there
is no universal agreement on the definition and practice of the robust design philosophy,
and the range of reliability theory is ever expanding. The more important issue is to
identify and combine the merits in both concepts.

In reliability-based design, all uncertain quantities are modeled as random variables (or
processes if variation in time is important).  If the statistical distributions of the input
random variables are well established (i.e. when all uncertainties or variabilities are
reducible (or expected)) then all of the uncertainties have been counted for in the design
process and the result of reliability-based design would be robust by the more practical
definition of robustness.

When the distributions of the input random variables contain uncertainty due, for
example, to lack of data or unintended usage, the safety index or computed reliability will
be subject to error.  For example, if the mean value and standard deviations of the
horizontal force, Px, was obtained with only six samples, we would suspect that they may
not be the true means and standard deviations of the force.  When more samples become
available, we may find that the mean value is actually 550 and the standard deviation 100.
The question is how to ensure the robustness of the reliability-based design when
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distributions of the random variables contain uncertainties.  One method in reliability
theory to address such problems is to model the input uncertainties using random
variables with random means and/or standard deviations.  The problem with this method
is that another layer of uncertainties may be introduced when defining the distribution of
the mean of a random variable.  Instead of using this approach in this study, we will look
into the uncertainties in the means and standard deviations of the input random
parameters by using the concept of robust design.

In the context of reliability-based design, a definition of robustness that can be translated
directly into a design criterion is that a robust design is one that is least sensitive to the
change in the statistics of the input random variables (such as the mean, standard
deviation and type of a distribution) within acceptable range of cost.  We will call the
design philosophy based on such a definition reliability-based robust design (RBRD).

Since structural design usually involves a number of input random variables, there are
many sensitivity factors.  Simultaneously minimizing all factors requires multi-objective
optimization techniques.  To simplify the problem, a weighted average of the sensitivity
factors can be used as a single objective function.  Using this objective, a reliability-based
robust design criterion can be formulated as:
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where wi’s are the weight coefficient, and θi’s are the statistics of the random variables
such as the means and standard deviations.  The factor θi/β in front of each derivative is
used to make them non-dimensional.  With this multiplier, each sensitivity factor
represents the percentage change in β for each percent of change in θi.

The final design will, in general, be sensitive to the weighting coefficients.  The selection
of appropriate weighting coefficients is problem dependent and deserves more study.  In
general, the weighting coefficients should be associated with the likelihood and
magnitude of the potential change in the corresponding parameter.  The greater the
magnitude and likelihood a parameter might change, the larger the weighting coefficient
should be.

Let us now consider the beam example problem.  We will use 3 as the target reliability
level (βT), and 3 as the upper bound on the weight (cost).  Now the question is how to
select the weight coefficients.  We will try two sets of coefficients and observe the results.
Let the first set of coefficients be unity for all wi’s.  Suppose we are quite confident in the
mean values of the three random variables, but are not sure about their standard
deviations.  We can make w1=w2=w3=0 and w4=w5=w6=1.  Using these two sets of



8

weight coefficients, the final designs and their sensitivities are obtained and listed,
respectively, in the last two columns in Table 2.  It can be seen that these two design are
drastically different.  Actually, the first design emphasizes the mean values of the loads
and the other design places emphasis on the variances of the loads. In reality, which
design is more robust depends on whether the mean values or the variances of the random
variables have greater variation.

RESULTS AND DISCUSSION

Table 2 summarizes the four designs of the beam.  The deterministic design using 95th

percentile values for loads and 5th percentile values for material properties yields a design
with a safety index of 2.60, which is unacceptable.  However, if we use 99th percentile
values for load and 1st percentile values for material, we will get a safe design (β = 3.75),
with penalty of higher weight (3.80).  In general, deterministic design is capable of
yielding safe designs if sufficiently large conservatism is built in.  It, however, is difficult
to achieve an optimal balance between the safety and economics using this approach.

Column 3 in Table 2 describes the reliability-based design. It is the lightest design
possible with a reliability level corresponding to a safety index of over 3.  For the case
where the parameters of the input random variables such as means and standard
deviations are well established, and unexpected variations are not of great concern, the
reliability-based design is also a robust design because all the important uncertainties
have been accounted for.

When the statistics of the input random variables are subject to uncertainty, the reliability
result contains uncertainty, and the reliability-based design may not be the most robust
design.  To achieve a design that satisfies the required reliability level and at the same
time minimizes the performance reduction caused by the potential changes in the
distributions of the input random parameters, reliability-based robust design approach can
be employed.  Two designs based on Eq. (7) are listed in Table 2.

Figure 2 shows the probability density functions for the above mentioned four designs.
Figure 3 shows the normalized sensitivity factors of these four designs.  Designs 2, 3, & 4
all have β = 3, but the g-function has different means and standard deviations. Design 2
has the minimum weight, but the largest sensitivities.  When there is little or no
uncertainty in the means and standard deviations of the input random variables, Design 2
is most desirable.  Designs 3 and 4 have the same reliability and weight, but different
sensitivity factors.

Design 3 is obtained by minimizing the reliability sensitivities with equal weight for all
parameters.  Since the sensitivity factors with respect to the means are much larger than
those with respect to the variances, this design is pushed furthest to the right. Design 4 is
obtained by minimizing the reliability sensitivities with respect to only the variances of
the random variables, its g-function has the smallest variance.  When there are no
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variations in the means of the random variables, this design should be the most robust
one.

Fig. 2   PDF of g-Function for Different Designs
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Fig. 3  Normalized Sensitivity Factors for Different Design
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CONCLUSIONS

(1)  The reliability-based design is the most robust and economical design when the
statistics (such as the mean and standard deviation) of the input random variables are
well defined.

(2)  In the context of reliability-based design, robustness can be defined in terms of
reliability being least sensitive to variations in the statistics (such as means and
standard deviations) of the random variables while still meeting design cost and
performance targets.

(3)  When the uncertainties in the statistical distribution of the random variables are
thought to be significant, reliability-based robust design provides a useful design tool
to minimize the impact of such uncertainties.

(4)  The design that minimizes the weighted average of the reliability sensitivity factors
can be highly dependent on the weighting coefficients selected.  In general, the weight
coefficients must be selected to reflect the uncertainties in the distributions of the
random variables.
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