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Abstract

A new method for performing RANDOM vibration analysis within
MSC/NASTRAN is presented in this paper. The method is a direct ap-
plication of a well known result of Linear Systems Theory and allows ez-
act computation of RMS values of any number of structural responses and
they can be postprocessed as if they were originated in a conventional static
analysis (in colour plots for instance). Also the DMAP sequence that allows
to use it within MSC/NASTRAN solver is included and described. The
comparison of the obtained results with those given by standard method
shows the correctness of the DMAP sequence. Finally, extensions of the
capability of the presented method are outlined.



1 Introduction

RANDOM vibration analysis is performed within MSC/NASTRAN in Frequency
Response solution (SOL 111). This RANDOM solution postproccesses the trans-
fer functions of the results requested by the user, i.e. stresses, forces, accelera-
tions, etc., by means of numerical integration of the PSD curves of the responses,
calculated from the corresponding ones of the excitation forces and the frequency
response of the structure. The calculation process presents some difficulties very
well known by the users:

e The results have to be requested one by one (no instruction as STRESS=ALL
is available). This inconvenient is important when dealing with big struc-
tures

e An relatively important number of mathematical operations have to be
made for the calculation of each individual result.

e It is not possible to visualize RMS results (stresses for instance) in color
plots as it is made in static or modal analysis, because RANDOM results
are not stored in the OUTPUT? file produced by MSC/NASTRAN.. This
is obviously important to have a clear idea of the part of the structure that
is most loaded.

e The solution obtained is not exact because the results PSD are calculated
by means of a numeric integration

The method presented in this paper tries to solve these shortcomings. The
main advantage with respect to the sequence already implemented within MSC/
NASTRAN solution 111, is that all stresses, forces or any result requested by
the user may be computed, and it is possible to postprocess the RMS results
as if they came from a conventional static analysis (color plots can be obtained
showing RMS stresses, displacements and so on). Other are the exactness and
higher efficiency (the calculation sequence is clearly simpler and shorter that the
default one).

Obviously, there is an associated cost however. The main limitation of the
proposed method is that it is only valid for uniform input RANDOM spectra
(i.e. white noise one). Nevertheless this limitation can be easily overcome in
most practical cases, as it will be described in a future paper.

A DMAP ALTER (also included in the paper) was developed to implement
the method in MSC/NASTRAN sequence SOL 11. The ALTER sequence was
proved comparing its results to default MSC/NASTRAN ones (see paragraph.
6). As expected, the results are exactly the same.

The paper is structured as follows. First, the mathematical background to
obtain the exact solution of RMS responses to white noise excitation is reviewed.



Then, a direct application to structure-like systems is shown and the sequence of
mathematical operations needed is identified. Afterwards, details of the imple-
mentation of this sequence into DMAP form is given, and the obtained results
are validated through a representative example. Finally, details on possible ex-
tensions of the proposed method to more general problems is anticipated and
discussed.

2 Mathematical Background

Ref. [1] gives a fairly complete and rigorous derivation of the theory of response
of linear systems to white noise random excitation sources. Therefore, only a
brief summary of the main results will be presented.

2.1 Output variance matrix for linear systems submitted
to white noise

It is well known from Linear Systems Theory how to calculate the RMS response
of a linear dynamic system submitted to white noise zero mean excitation. Such
a system, may always be written in the form

Tz = Ax+ Bw
= Cx (1)

where A is a stable matrix (i.e. all its eigenvalues have negative real parts)!, x is
the state vector, w is a vector of excitation sources consisting of zero mean white
noise with PSD matrix W (symmetric and positive definite) and z is the system
output. Note that the feedthrough term Dw is not present in the output vector
definition. Otherwise, the RMS of the output would be infinite.

It can be demonstrated that the steady state variance matrix X of the state
vector z(t), defined as

X = lim € (z(t)a(t)") (2)

(€ is the mathematical expectance operator), is the solution of the linear Lya-
punov equation

AX + XA+ BWBT =0 (3)

It can be proved that the above equation has a unique symmetric nonnegative-
definite solution if and only if for all i and j the eigenvalues of the state matrix
A verify the relation

IThe response of an unstable system would be infinite.
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A+ #£0 (4)

This condition will always be met for structures having no rigid body modes.
It is clear that the RMS displacements of a structure having rigid body modes
will become infinite if the structure is submitted to white noise forces.

The steady state variance matrix, Z, of the output z(t), i.e.

Z = lim € (2(t)2(1)") (5)
can be calculated from X by
Z=CxC" (6)

and finally, the steady state mean square values of the response are simply

22 = diag (CXC") (7)

Although the above Lyapunov equation might be rewritten as a linear system
of equations in terms of the elements of the matrix X, it can be solved much
more efficiently by using Schur decomposition techniques (see [3] for instance).
However, since this is not possible within DMAP, we shall proceed in a different
way.

3 Application to structural models

3.1 Dynamic equations of a structural system (frequency
response problem).

The equilibrium equations of a linear dynamic structural problem is written in
modal coordinates as follows

Mppiiy, + Bppig, + Kppun, = Py fp (8)

The subindex h refers to the number of modes retained in the analysis. The
matrix P, (where p is the number of independent load cases) is the matrix
of modal forces; each column corresponds to the modal forces of a particular
excitation case. Finally uy is the vector of modal displacements. The load vector
fp is white noise zero mean process with PSD matrix Wp,.

The above equations can be written in the form of a first order linear system
of differential equations. It takes the form

Te = Aeexe + Pepfp (9)

where z, is the state vector,



%:{g} (10)

of order 2ny, A.. is the system matrix,

A — Onn, I,
ee o M};hl Khh _ M};hl th

F,, is the load influence matrix,

Oy,
P.,= _1P
l Mhhlphp ]

In the case in which the normal modes are normalized with respect to the mass
matrix, and for the case of modal structural damping, My, = Ip, Ky = —Q2,
and By, = Gup€ip and the above matrices can be written

Onn, I,
A, = 11
l—Q,%h —thﬂhh] ()

where Oy, and Iy, are zero and identity matrices of order h respectively,

Qnp = diag (wy,wa, ..., wn) (12)

being w; the natural frequency of the i-th mode, and

Gy = diag (91,92, - - -, 9n) (13)

where g; corresponds to the modal structural damping associated to mode i.
Finally the load influence matrix P, is

P, = l Orp (14)

Py

3.2 Relation between modal coordinates and output vari-
ables

The response variables, that is those structural output variables in which the user
is interested, can be expressed as a linear function of displacements, velocities and
accelerations. Thus, they can be expressed in the form

Rl — C_’](f)huh + C_’Iihuh + Clzhah
or, elliminating i, from (8)
iip, = My (Pupfp — Bt — Knnup,) (15)
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Zk = C_',ghuh + C’;hdh + C’,%th_hl (Phpfp - thdh — Khhuh)
= (ngh - é;th;?thhh) up, + <C_’Iih - é;th{hlth) up, +
+C’l§th:h1Phpfp (16)

which can be written as
0 1 Up,
2k =| Cp Cip } { i, } + Dipfp = CreTe + Dip fp

where
Che=| Ch Cly | (17)

and
Clgh = C:’Igh - le?hM}:th hh
Clih - q;h - Clthh_hl Bhp
Dy = CiyM,, By (18)

2k is thus a vector of k£ elements that may represent any combination of all struc-
tural response variables (stresses, displacements, velocities, SPC forces, MPC
forces, etc.)

In the problem we are dealing with, the matrix CZ, (and hence Dy,) must be
zero, since otherwise the RMS of the response z, would be infinite. Thus, the
response vector is

2 = C’kexe

Normally, the matrix C}, will be zero, since the response variables requested
by the user will be most likely displacements, stresses, element forces, etc. which
do not depend on velocities. The submatrix CP, can be recovered directly from
MSC/NASTRAN as it will be seen later. However, the presence of non zero C},,
matrix does not alter the subsequent development.

The Lyapunov equation (3) can be solved explicitly as follows (see for instance
[3]). Let A and T.. be the eigenvalues and eigenvectors matrices of the state
matrix, i.e. they verify the equation

AeeTee = TeeAee (19)
They are given explicitly by
[ Ann Onn |
A = 20
i Ohh Afh ] ( )
and i} i}
Inp, Iy
T.. = 21
A (21)




the superindex H meaning complex conjugate transpose. The diagonal matrix
App can be easily calculated from natural frequencies and modal dampings as

1 ) 1
Aph = Qin, <—§th + 4/ Iy, — ZG%h) (22)

where j = v/—1. Using equation (19) the Lyapunov equation
AceXee + Xee Al + PyWpp PL =0
can be written
T
TeeheeTe Xee + Xee (TeeheeT,.t) + PoyWppPly = 0 (23)

and letting

Xee = Te_elXeeTe_eH

Wee = TejPEPWPPP;T;eH

equation (23) can be simplified to read
AeeXee + XeeAfe + Wee =0

Owing to the diagonal structure of A.., the matrix X,. can be explicitly solved
term by term,

(%), = - (W), (24)
i (Aee)y + (A
and the solution X, to the Lyapunov (23) equation is finally given by

Xee = Toe X TH (25)

The steady state variance of the structural responses is

Zkk = CkeXeeC]z:g (26)

and the steady state mean square values of the response,
72 = diag (Cre XecCFL) (27)

Finally, the steady state RMS value of the structural response is given by

5 (28)

The factor 2 comes from the fact that in the above derivation it was supposed
that the frequency spanned from —oo to +oo, while in structural applications it
is more usual to restrict the frequencies to take positive values only.

I \/diag (CreXeeCE)
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The expression (28) is the final results of our analysis. It gives the ezact solu-
tion for the RMS values of the responses of a structure submitted to white noise
of PSD given by the matrix W,,.The whole procedure can now be summarized
as follows:

1. Obtain the matrix of modal responses for the desired output variables. This
will give the matrix Cj, or alternatively CP. if output variables involve only
modal displacements, which is by far more usual.

2. Obtain the eigenvalues and eigenvectors of the state matrix from the natural
frequencies and modal dampings, by means of equations (22), (20) and (21)

3. Obtain the state variance matrix X.. by means of equations (24) and (25)

4. Perform the matrix operation (28) to obtain the RMS values of the desired
outputs.

4 Programming within MSC/NASTRAN

Following the operations sequence shown in preceding paragraph, a DMAP alter
has been prepared for RANDOM problems solved within modal formulation. This
formulation is more usual than the direct one when dealing with medium/high
size structures. Particularly the alter is written for MSC/NASTRAN version 69,
SOL 11.

The PSD matrix W,, of the external forces must be introduced by the user
via DMI cards on the Bulk Data Section.

With respect to the output variables, the sequence allows to recover RMS
values of stresses, element forces and displacements. For the rest of output vari-
ables: SPC or MPC forces and so on, a few lines should be added to the alter.
In particular, MPC forces can be calculated for instance using the theory given
in [4].

The displacements are printed in the .f06 file in the standard format of static
solutions of MSC/NASTRAN, while the stresses and element forces are printed
in the .f06 file in matrix form (using module MATPRN), and an auxiliary index
table is also printed to allow the identification of the different items (stresses
or forces). It is not possible to print these results in the standard format of
MSC/NASTRAN. This inconvenient arises from the poor operational capability
of DMAP language when managing table datablocks (stresses and element forces
are stored on tables while displacements are used both in matrix and table form).

However it is still possible to visualize the results in the same way as it is
usually made in static analysis. Most postprocessors read stresses and element
forces in table datablock format (as it is stored in the OUTPUT?2 file). Therefore,
a simple external computer program is needed to translate the Alter stress/force



results (given in matrix form) into table datablock format. In the authors’ case
the postprocessor used was MSC/ARIES which eases considerably the above
process since the input results file is written in ASCII format. Following this
procedure, color plots, contour plots etc. of RMS displacements and stresses
have been obtained without difficulty.

5 DMAP sequence

The sequence given in Appendix A is valid for MSC/NASTRAN version 69 SOL
11. It is valid for the obtention of RMS displacements, stresses and element forces.
This requires the standard Case Control Commands DISP=ALL, etc. and the
parameters OUTDIS, OUTSTR and OUTFOR (depending on the desired results)
must be set to “YES’ in the Bulk Data section.

A parameter named NUMCO has been included aimed at the following pur-
pose. The matrix Zy, given in (26) must be calculated explicitly, although in
fact only its main diagonal will be of use for us, as shown in equation (27). This
matrix may be very large, so it is convenient to perform the matrix operation
(26) by smaller blocks. If the user specifies some value for NUMCO, the triple
matrix product will be performed in blocks of NUMCO rows, thus saving space
and computation time. The parameter NUMCO has a default value of 400.

6 Examples

The DMAP Alter sequence has been validated, comparing its results with the
outputs obtained from MSC/NASTRAN standard solution SOL 111. A relatively
complex model (it represents an Optical monitoring camera, mounted onto the
INTEGRAL ESA satellite) is used, and it is shown in Figure 1. The size of
the model is about 10000 degrees of freedom, and about 1500 elements (most of
them beam and shell types). The comparison for RMS displacements is shown
in Figures 2 and 3. For stresses, the comparison is given in Table 1. The small
differences arise from the fact of that MSC/NASTRAN uses numerical integration
to derive the RMS values. Similar checkings have been done for element forces.
The external input consists of two uncorrelated random excitations introduced
as concentrated forces.



Figure 1: OMC Optical Monitoring Camera

DISPLACEMENT VECTOR

POINT
ID. TYPE T1 T2 T3 R1 R2 R3

360 G 1.877807E+00 1.572087E+00 1.079360E+00 1.244318E-02 1.499236E-02 1.844487E-02
6020 G 3.531184E+00 1.415994E+00 6.924799E-01 1.687280E-02 1.365854E-02 1.813710E-02
90010 G 8.147181E+00 6.14b5472E+00 1.417354E+00 9.573186E-02 6.429763E-02 1.196434E-01
90778 G 4.301331E+00 4.542489E+00 7.723124E-01 2.327813E-01 2.341773E-01 7.750175E-02

Figure 2. RMS displacements obtained by application of the method proposed
in this paper
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OXY-OUTPUT SUMMARY (AUTO OR PSDF)

0 PLOT CURVE FRAME RMS NO. POSITIVE XMIN FOR XMAX FOR YMIN FOR X FOR YMAX FOR X FORx
TYPE TYPE NO. CURVE ID. VALUE CROSSINGS ALL DATA  ALL DATA ALL DATA YMIN ALL DATA  YMAX

0 PSDF DISP O 350( 3) 1.877518E+00 1.685858E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 1.173E+00 1.440E+01
0 PSDF DISP O 350( 4) 1.571824E+00 9.679505E+00 2.000E-01 6.020E+01 0.00QE+00 5.910E+01 2.117E+00 6.700E+00
0 PSDF DISP O 350( 5) 1.079080E+00 1.697989E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 1.122E+00 7.300E+00
0 PSDF DISP O 350( 6) 1.244140E-02 1.813201E+01 2.000E-01 6.020E+01 0.00QE+00 5.910E+01 5.199E-05 7.300E+00
0 PSDF DISP O 350( 7) 1.499149E-02 1.235287E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 1.654E-04 6.700E+00
0 PSDF DISP O 350( 8) 1.844023E-02 1.325200E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 3.105E-04 6.700E+00

0 PSDF DISP O 6020( 3) 3.526277E+00 1.898766E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 3.082E+00 1.690E+01
0 PSDF DISP O 6020( 4) 1.415804E+00 8.738486E+00 2.000E-01 6.020E+01 0.000E+00 5.910E+01 3.224E+00 6.700E+00
0 PSDF DISP O 6020( 5) 6.919639E-01 1.027104E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 6.816E-01 7.300E+00
0 PSDF DISP O 6020( 6) 1.687180E-02 1.451736E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 2.761E-04 1.410E+01
0 PSDF DISP O 6020( 7) 1.365185E-02 2.294193E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 1.094E-04 2.350E+01
0 PSDF DISP O 6020( 8) 1.813249E-02 1.925008E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 8.574E-05 1.940E+01
0 PSDF DISP O 90010( 3) 8.147145E+00 1.790389E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 4.674E+01 1.850E+01
0 PSDF DISP O 90010( 4) 6.144311E+00 2.015849E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 1.273E+01 1.700E+01
0 PSDF DISP O 90010( 5) 1.416426E+00 1.922274E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 7.599E-01 2.350E+01
0 PSDF DISP O 90010( 6) 9.572046E-02 2.145818E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 4.928E-03 1.950E+01
0 PSDF DISP O 90010( 7) 6.429716E-02 1.833950E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 3.404E-03 1.850E+01
0 PSDF DISP O 90010( 8) 1.196380E-01 2.486071E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 5.962E-03 2.350E+01
0 PSDF DISP O 90778( 3) 4.301202E+00 1.894170E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 6.118E+00 2.090E+01
0 PSDF DISP O 90778( 4) 4.542355E+00 1.840977E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 8.237E+00 1.960E+01
0 PSDF DISP O 90778( 5) 7.722689E-01 1.545834E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 4.792E-01 7.300E+00
0 PSDF DISP O 90778( 6) 2.327814E-01 1.986796E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 2.367E-02 1.960E+01
0 PSDF DISP O 90778( 7) 2.341771E-01 1.989005E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 2.403E-02 1.960E+01
0 PSDF DISP O 90778( 8) 7.750043E-02 1.909940E+01 2.000E-01 6.020E+01 0.000E+00 5.910E+01 2.398E-03 1.950E+01

Figure 3. RMS displacements output from standard MSC/NASTRAN
procedure

7 Future extensions

The capabilities of the procedure described in this paper can be substantially
increased by further extensions. Description of these extensions that can be

easily incorporated is given below.

o FLxtension to direct formulation. The procedure described as such, works
only with modal formulation for dynamic problems. By far, this is the
most usual approach. However, the algorithm can be easily reformulated
in terms of My,, By, and K,, (a meaning the degrees of freedom selected
in ASET) instead of the corresponding modal matrices. Note however that
the eigenvalues and eigenvectors of the corresponding system matrix A,
must be calculated explicitly by using the CEAD module. Once A.. and

T.. are calculated in this way, the rest of the procedure is the same.

e Non diagonal matrices. The user might be interested in including damp-
ing or stiffness matrices via DMIG cards. In this case, the mass, stiffness
and/or damping matrices might not be diagonal. The consequences of this
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RMS Stress Comparison (MPa)
Element Component | MSC/NASTRAN results | DMAP results

oo (21) 87.26 87.28
o, (21) 68.78 68.79
Ty (21) 20.69 20.69

6510 (QUADY) | J%0o) 52.39 52.40
o, (22) 81.92 81.93
Tay(22 24.27 24.27

y(

o, (21) 294.27 204.27
o, (21) 89.62 89.62
Tay(21) 46.56 46.57

90005 (QUAD4) 0.(22) 300.88 300.88
o, (22) 128.20 128.20
Tay(22) 82.13 82.14
74 (21) 403.10 403.12
oy (21) 954.96 954.98
Tay(21) 173.03 173.10

90220 (TRIA3) | %) 274.14 274.18
o,(22) 385.30 385.31
Ty (22 137.22 137.30

y(

Table 1: RMS Stress Results Comparison

fact are twofold: first, the eigenvalues and eigenvectors of the resulting
system matrix A.. must be calculated explicitly, and second, the eigenval-
ues/vectors will not generally be arranged in the same order than that of
the natural frequencies and modes of the structural model. Since the struc-
tural modal responses are ordered columnwise according to the structural
modes, the user must be careful in ensuring that the order of system matrix
eigenvectors is consistent.

e Non uniform spectrum. The results described in this paper are only valid for
zero mean white noise excitation forces. Extensions to more general cases
of excitation is possible and easy. Most of the more usual shapes of input
spectra in the aerospace field can be tackled with minor modifications of the
algorithm just described. However, due to the lack of space, this procedure
will be described in detail in a future paper.
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8 Conclusions

An efficient method for computation ezact RMS values of structural response vari-
ables of structures submitted to white noise excitation forces has been described
and can be easily appended to the MSC/NASTRAN Frequency Response solu-
tion. A DMAP Alter has been prepared and described to that purpose. The
method allows the calculation of RMS values of displacements, stresses, element
forces and in general all conceivable output variables that can be expressed as
linear functions of displacements and velocities. Results have been compared to
those provided by MSC/NASTRAN standard method, and have been proved to
be the same in all cases.
Main advantages of the described method are

e It allows the postprocessing of RMS results exactly in the same manner
as if they were obtained from a conventional static analysis (i.e., color and
contour plots over the whole structure)

e The procedure provides exact solutions so that piecewise numerical in-
tegration of the PSD of the response is not needed. Thus the proce-
dure is by far much more efficient than the standard one implemented in
MSC/NASTRAN.

e Owing to this fact, there is no limitation on the number of structural re-
sponse variables requested by the user, as it happens in fact with the stan-
dard procedure.

e Extensions of the capabilities of this procedure to more general problems
are easy and require only minor modifications.
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10 Appendix A. DMAP Sequence

DMAP SEQUENCE FOR THE OBTENTION OF RMS VALUES OF
DISPLACEMENTS, ACCELERATIONS, STRESSES AND ELEMENT FORCES,
IN A WHITE NOISE RANDOM ANALYSIS

THIS DMAP ALTER IS VALID FOR:

**% MSC/NASTRAN VERSION 69 Y SOL 11 (MFREQ) ***x**

THE OUTPUT IS OBTAINED USING THE STANDARD
CASE CONTROL INSTRUCTIONS:

DISP = ALL
STRESS = ALL
FORCES = ALL

MOREOVER IT IS NECESSARY TO INTRODUCE THE FOLLOWING
PARAMETERS INTO THE BULK DATA SECTION:

PARAM, OUTDIS, YES (FOR OBTENTION OF DISPLACEMENTS)
PARAM, OUTSTR, YES (STRESSES)
PARAM, OUTFOR, YES (ELEMENT FORCES)

PARAMETER NUMCO: INTEGER NUMBER NECESSARY FOR HARD DISK
OPTIMIZATION. ITS DEFAULT VALUE IS 400, BUT MAY BE CHANGED
VIA BULK DATA (RECOMMENDED RANGE IS 50 - 1000)

DMAP ALTER ALTERRANDOM.V69

PREPARED BY F. J. SAN MILLAN
DESIGNED BY E. DE LA FUENTE

AUGUST 1997

IN.T.A. NATIONAL INSTITUTE FOR AEROSPACE RESEARCH
STRUCTURES AND MECHANISMS DEPARTMENT

H PP AP ANLPANPNL DL PLNL DL LD PDLS DL DL PLNLNPANDNL DDA DL DL PLNDPLDLNLLNLPANPNAPDPLPDPHHD

COMPILE SOL11 SOUIN = MSCSOU LIST NOREF
ALTER 6 $

$

TYPE PARM, 1, II, JJ $

TYPE PARM,,I,, NUMFR, NCOLPH, NPP, NH, NE $
TYPE PARM,,I,, COPH, N1, NTOTAL, NRESID $
TYPE PARM,,CHAR3,Y,0UTDIS="NO’ $

TYPE PARM,,CHAR3,Y,0UTSTR
TYPE PARM,,CHARS3,Y,OUTFOR="NO’ $
TYPE PARM,,I,Y,NUMCO=400 $

$ *** SPP = PSD MATRIX OF EXTERNAL LOADS (NPP * NPP) ***
3
$ NPP = NUMBER OF LOAD CASES

$

B

ALTER 497 $

DMIIN DMI,DMINDX/SPP, ANN,BNP,CPN, , ,,,,/ $
DTIIN DTI,DTINDX/CONTROL,,,,,,,,, $

PARAML SPP//"TRAILER’/1/S,N,NPP $§

B e

$

$§ **** OBTENTION OF MODAL MATRICES ****
$

$ MESS = MODAL STRESSES MATRIX

$ MEFF = MODAL FORCES MATRIX

ALTER 612, 612 §
ALTER 619 $
IF (OUTSTR="YES’ OR OUTFOR="YES’) THEN $
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DRMS1 IPHIG1,IQG1,IES1,IEF1/TPHHIP,MPHHIP,TQQP,MQQP, TESS,
MESS, TEFF,MEFF $

ELSE $

ENDIF $

$ *** OBTENTION OF MATRIX PHP (NH * NPP) ***

$ THIS MATRIX CONTAINS THE MODAL FORCES FOR THE
$ DIFFERENT LOAD CASES.

$

$ NH = NUMBER OF MODES COMPUTED IN THE PROBLEM
$ NPP = NUMBER OF LOAD CASES

ALTER 639 $

NH = NEIGV §$

PARAML PH//’TRAILER’/1/S,N,NCOLPH $
NUMFR = NCOLPH/NPP $

$

mI=0%

FILE PHP=APPEND $

$

DO WHILE (II<NPP) $§

COPH = 1 + II*NUMFR $
MATMOD PH,,,,,/PH1C,/1/COPH $
APPEND PHIC,/PHP/2 §
M=1I+18%

ENDDO

OBTENTION OF MATRIX BEP ( NE * NPP )
T

HE FIRST NH ROWS OF THE MATRIX ARE NULL
IN A GENERAL PROBLEM

NE = NH * 2 §

MATGEN ,/ZEROHP/7/NH/NPP $

MATGEN ,/RP1/6/NE/NH/NH $

MERGE ZEROHP,PHP,,,,RP1/BEP/1 $

$ ** OBTENTION OF MATRIX WEE (NE * NE) **
$

$
$ WEE = BEP * SPP* (BEP)T

TRNSP BEP/BEPT $

SMPYAD BEP,SPP,BEPT,,,/WEE/3/1 $
DELETE /PH1C,BEP,BEPT, ,/ $

Fxkxk OBTENTION OF COMPLEX EIGENVALUES MATRIX *¥¥¥x
EIGVAMT ( NE * NE )

AND:

COMPLEX EIGENVECTORS MATRIX

TEE ( NE * NE )

DEFINITION OF MATRICES:

PP PDPLPAPLPNPLAPDPLDLPOSD

$ - OMHH ( NH * NH ): DIAGONAL MATRIX CONTAINING NATURAL
$ FREQUENCIES OF STRUCTURE

$

$ - CHIHH ( NH * NH ): DIAGONAL MATRIX CONTAINING MODAL
$ DAMPING VALUES

$..

DIAGONAL KHH/OMHH/"WHOLE’/0.5 $

MATGEN ,/IHH/1/NH $

MATGEN ,/NUHH/7/NH/NH $

$

ADD BHH,OMHH/CHIHH//2.0/2 $

DIAGONAL CHIHH/CHIHH2/"WHOLE’/2.0 $

ADD IHH,CHIHH2/IMAGHH2//-1./0 $

DIAGONAL IMAGHH2/IMAGHH/"WHOLE’/0.5 $

$

ADD OMHH,CHITHH/REALHH/-1.//1 $

ADD OMHH,IMAGHH/IMHH///1 $

$

ADD REALHH,IMHH/EGVT/1./(0.,1.)/0 $
ADD REALHH,IMHH/EGVTCJ/1./(0.,-1.)/0 $
$

MATGEN ,/CRPP/6/NE/NH/NH $
MERGE EGVT,NUHH, NUHH,EGVTCJ, CRPP,/EIGVAMT $
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MERGE IHH,EGVT,IHH,EGVTCJ,CRPP,/TEE///1 $

$
$ **¥% OBTENTION OF MATRIX XEE **%¥*
$ ( NE * NE)

DIAGONAL EIGVAMT/EGVRE/’COLUMN’ $
ADD EIGVAMT,/EIGVABIS/(0.,-1.) $
DIAGONAL EIGVABIS/EGVIM/’COLUMN’ §
ADD EGVRE,EGVIM/EGVEE//(0.,1.)/0 $

3$

FILE XITMAT —APPEND §
=18

DO WHILE (II<=NE) $
APPEND EGVEE,/XIIMAT/2 $
I=11+4+18%

ENDDO §

$

TRNSP XIIMAT/XJIMAT $

MATMOD XJJMAT,,,,,/XJJMATH,/10 $

ADD XIIMAT,XJJMATH/XEE $

$ OBTENTION OF MATRIX WEEB (NE * NE)
$

$ WEEB = TEEINV * WEE * (TEEINV)H

$

$ INDEX H MEANS TRANSPOSED COMPLEX CONJUGATED

SOLVE TEE,/TEEINV/3 $

TRNSP TEEINV/TEEINVT $

MATMOD TEEINVT,,,,,/TEEINVH,/10 $
SMPYAD TEEINV,WEE,TEEINVH,,,/WEEB/3/1 $

$ OBTENTION OF MATRIX PEEB (NE * NE)
$

$ PEEB(L,J) = - WEEB(1,J)/XEE(I,J)

$

$
$ OBTENTION OF MATRIX PEE (NE * NE)
$

$ PEE = TEE * PEEB * (TEE)H
$
$ INDEX H MEANS TRANSPOSED COMPLEX CONJUGATED

TRNSP TEE/TEET $

MATMOD TEET,,,,,/TEEH,/10 $
SMPYAD TEE,PEEB,TEEH,,,/PEE/3/1 $
$MATPRN PEE// $

HIS MATRIX CONTAINS ALL DISPLACEMENTS RMS VALUES

T
URMS IS A MATRIX (NDOF * 1)
NDOF = NUMBER OF DEGREES OF FREEDOM OF THE STRUCTURE

MATGEN ,/UU1/6/NE/NH/NH $
MATGEN ,/IDMAT1/1/1/1 $

FILE MAT1TR=SAVE $

ADD IDMAT1,/MAT1TR/2.0E-60 $

$

$

IF (OUTDIS = *YES’) THEN $

PARAML PHIGH//’"TRAILER’/2/S,N,NDOF $
$

MATGEN ,/NUGH/7/NDOF/NH $
MERGE PHIGH, NUGH,,UU1,/PHIEH/1 $

$

N1 = INT(NDOF/NUMCO) $

$

mI=1%

FILE U4RMS=APPEND §

DO WHILE (IT <=N1) §

NTOTAL = NDOF - NUMCO * (II-1) $

NRESID = NDOF - NUMCOXII §

MATGEN ,/UU3/6/NTOTAL/NUMCO/NRESID $
PARTN PHIEH, UU3/PHIEL,PHIE2,,/1 $
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TRNSP PHIE1/PHIELT $
3

SMPYAD PHIE1,PEE,PHIELT,, /ULRMS/3 $
DIAGONAL UIRMS/U2RMS/’COLUMN” §$
TRNSP U2RMS/U3RMS $

$

APPEND U3RMS,/U4RMS/2 $

EQUIVX PHIE2/PHIEH/ALWAYS $

IM=1II+18%
ENDDO $
$

DELETE /PHIGH,PHIE1,PHIE1T,U1RMS,U2RMS/ $
DELETE /U3RMS,UUS,,,/ $

$

TRNSP PHIEH/PHIEHT $

$

SMPYAD PHIEH,PEE,PHIEHT,,, /ULRMS/3 $
DIAGONAL U1RMS/U2RMS/’COLUMN” §
TRNSP U2RMS/U3RMS $

APPEND U3RMS,/U4RMS/2 $

$

$

ADD U4RMS,/U5RMS/0.5 $

TRNSP U5RMS/U6RMS $

DIAGONAL UBRMS/URMS/"WHOLE’/0.5 $

$
DELETE /U4RMS,U5RMS,U6RMS,PHIEH,PHIEHT/ $

$
$§ **** FORMATTED OUTPUT FOR DISPLACEMENTS ****
$ -

$
$ OUGRMS = DISPLACEMENTS

SDR2 CASECC,CSTM,MPT,DIT,EQEXIN, ETT,EDT,BGPDT,, URMS,EST,
XYCDB,,,/,,OUGRMS,,,/’STATICS’/S,N,NOSORT?2 $

OFP OUGRMS//S,N,CARDNO/1 $

DELETE /PHIGHT,URMS2,URMS2T,URMSS, URMS/ $

ELSE $

HIS MATRIX CONTAINS ALL STRESS RMS VALUES

T
OESRMS IS A MATRIX (NSTCO * 1)
NSTCO = NUMBER OF STRESS COMPONENTS OF STRUCTURE

$ THE OUTPUT 1IS:

3$

$ - OESRMS : RMS STRESS VALUES

3$

$ - TESSN : INDEX TABLE FOR DISTINCTION OF THE DIFFERENT
$ STRESS COMPONENTS WITHIN MATRIX OESRMS

IF (OUTSTR = 'YES’) THEN §

PARAML MESS//'TRAILER’/2/S,N,NSTCO $
$

MATGEN ,/NUSTH/7/NSTCO/NH §$

MERGE MESS,,NUSTH,,UU1,/MESSE/1 $

$
N1 = INT(NSTCO/NUMCO) $
$

m=1%

FILE ES4RMS=APPEND $

DO WHILE (II<=N1) $

NTOTAL = NSTCO - NUMCO * (II-1) $
NRESID = NSTCO - NUMCOX*II $

MATGEN ,/UU4/6/NTOTAL/NUMCO/NRESID $
PARTN MESSE,,UU4/MESS1,MESS2,,/1 $
TRNSP MESS1/MESSIT $

$

SMPYAD MESS1,PEE,MESSIT,,, /ESIRMS/3 $
DIAGONAL ES1RMS/ES2RMS/’COLUMN’ §
TRNSP ES2RMS/ES3RMS $

$

APPEND ES3RMS,/ESARMS/2 $

EQUIVX MESS2/MESSE/ALWAYS $

IM=1II+18%
ENDDO $
$

DELETE /MESS, MESS1,MESS1T,ES1RMS,ES2RMS/ $
DELETE /ES3RMS,UU4,,,/ $

$

TRNSP MESSE/MESSET $
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$
SMPYAD MESSE,PEE,MESSET,,,/ES1IRMS/3 $
DIAGONAL ES1RMS/ES2RMS/’COLUMN" $

TRNSP ES2RMS/ES3RMS $

APPEND ES3RMS,/ES4ARMS/2 $

$

$

ADD ES4RMS,/ES5RMS/0.5 $

TRNSP ES5RMS/ES6RMS $

DIAGONAL ES6RMS/OESRMS/"WHOLE'/0.5 $

$

TABEDIT TESS,CONTROL,,,/TESSN $

MATPRN TESSN, OESRMS// $

OUTPUT4 OESRMS,,,,//-1/11/2 $

DELETE /ES4RMS,ES5RMS,ES6RMS,MESSE,MESSET/ $
ELSE $

ENDIF $

$..

3$
$ *** CALCULATION OF ELEMENT FORCE MATRIX (OEFRMS) ***

@® ®

$ THIS MATRIX CONTAINS ALL ELFORCE RMS VALUES

@

$ OEFRMS IS A MATRIX (NFOCO * 1)
$ NFOCO = NUMBER OF ELFORCE COMPONENTS OF STRUCTURE

@

$ THE OUTPUT IS:

@

$ - OEFRMS : RMS FORCE VALUES
$

$ - TEFFN : INDEX TABLE FOR DISTINCTION OF THE DIFFERENT
$ FORCE COMPONENTS WITHIN MATRIX OEFRMS
IF (OUTFOR = 'YES’) THEN $

PARAML MEFF//"TRAILER’/2/S,N,NFOCO §

$

MATGEN ,/NUFOH/7/NFOCO/NH $

MERGE MEFF, NUFOH,,UU1,/MEFFE/1 $

$

N1 = INT(NFOCO/NUMCO) $

$

m=1%

FILE EF4ARMS=APPEND $

DO WHILE (IT<=N1) $

NTOTAL = NFOCO - NUMCO*(II-1) $

NRESID = NFOCO - NUMCO*II $

MATGEN ,/UU5/6/NTOTAL/NUMCO,/NRESID §$
PARTN MEFFE, UU5/MEFF1,MEFF2,,/1 $

TRNSP MEFF1/MEFFIT $

$

SMPYAD MEFF1,PEE,MEFFI1T,,,/EFIRMS/3 $
DIAGONAL EF1RMS/EF2RMS/’COLUMN’ $

TRNSP EF2RMS/EF3RMS $

$

APPEND EF3RMS,/EF4RMS/2 $

EQUIVX MEFF2/MEFFE/ALWAYS $

M=1+18%

ENDDO $

$

DELETE /MEFF, MEFF1,MEFF1T,EF1RMS,EF2RMS/ $
DELETE /EF3RMS,UUS5,,,/ $

$

TRNSP MEFFE/MEFFET $

$

SMPYAD MEFFE,PEE,MEFFET,,,/EFIRMS/3 $
DIAGONAL EF1RMS/EF2RMS/’COLUMN’ §
TRNSP EF2RMS/EF3RMS $

APPEND EF3RMS,/EF4RMS/2 $

$

$

ADD EF4RMS,/EF5RMS/0.5 $

TRNSP EF5RMS/EF6RMS $

DIAGONAL EF6RMS/OEFRMS/"WHOLE’/0.5 $
$

TABEDIT TEFF,CONTROL,,,/TEFFN $
MATPRN TEFFN, OEFRMS// $

OUTPUT4 OEFRMS,,,,//-1/13/2 $

DELETE /EF4RMS,EF5RMS,EF6RMS,MEFFE,MEFFET/ $
ELSE $

ENDIF §$

ALTER 810,810 $
ALTER 828,828 $
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$ INSERT INTO THE FMS SECTION
$
$ASSIGN OUTPUT4="C:\users\millanfj\NASTRAN.proofs\stress.oud’ UNIT=11,
$ FORM=FORMATTED DELETE
$ASSIGN OUTPUT4="C:\users\millanfj\NASTRAN.proofs\ force.oud’ UNIT=13,
$ FORM=FORMATTED DELETE
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