Automatic 3D mesh generation conforming a
prescribed size map.

Paul Louis George T and Houman Borouchaki §

Septembér 2, 1997

t INRIA, Gamma Project,
Domaine de Voluceau, Rocquencourt,
BP 105, 78153 Le Chesnay Cedex, France.
email: paul-louis.george@inria.fr
and
tUTT, GSM-LASMIS
12 rue Marie Curie
10010 Troyes cedex, France.
email: houman.borouchaki@univ-troyes.fr

Abstract. The generation of an adequate mesh is an essential pre-
requisite in any finite element simulation of a physical phenomenon de-
scribed in terms of PDE’s. This paper introduces a method enabling
to generate a three-dimensional mesh conforming a user-specified size
map. This Delaunay-type method creates isotropic tetrahedral meshes
conforming the specified size map. This method proved to be especially
suitable in mesh adaption schemes (mesh, numerical computation, er-
ror estimate)

Keywords. Mesh generation - Finite Element - Adaptation - De-
launay - Adapted mesh - Isotropic mesh.

1 Introduction

An essential pre-requisite in the numerical finite element simulation of physical
problems expressed in terms of PDE’s is related to the construction of an initial
adequate mesh of the domain [4]. This first stage, usually involving any fully
automatic mesh generation method (cf. [5]), is then followed by a computational
step. The numerical solution obtained with the initial mesh is generally analyzed
via an error estimate, which will indicate whether or not the process has converged,
based on the quality of the solution. The latter is closely related to the mesh
adequation with the underlying physical phenomenon. Hence, the role of the
error estimate is to indicate if the mesh density is too coarse or to fine in some
regions. In the first case, the computational scheme is too time consuming, as in
the other case, the solution behavior is probably not even captured. To match
these requirements, an adapted mesh need to be generated, its refinement been
related to the above specifications.

We do not focuss explicitely on the error estimate part, however we like to
emphasize the meshing technology and, in the isotropic case, we propose a method
enabling to create a mesh, such that

e the elements are as equilateral as possible,

e the element size corresponds to a pre-specified size (supplied by the error
estimate).

The proposed method is Delaunay-based. At first, Section 2, we recall the
main features of this type of method (in the classical case, e.g. without a size
map). Section 3, we mention several approaches used to define a size map in the
context of mesh adaption. The selected approach consists in using a background
mesh, similar to the current mesh, and Section 4, we describe a procedure to create
the mesh vertices using the background mesh. To this end, we recall the notion
of normalized unit length. Section 5, we review several mesh optimization tools.
Section 6 deals briefly with the (analytical) surface remeshing to conform a size
map. Section 7, several application examples will emphasize the efficiency of the
proposed method and, finally, Section 8, future developments and extensions of
this approach will be mentioned.

2 Classical scheme of a Delaunay-type method

The aim of this section is to recall the main features of a Delaunay- type mesh
generation method. We describe the principal steps of this supposedly well-known
method, [1], [16], ..., in order to show what modifications are needed in the mesh
generation scheme to respect a pre-specified size map.

We consider the classical case, in other words we assume a conforming mesh
of the domain boundary. The problem we face is to mesh the domain based on
this sole information.

2.1 Synthetic scheme

A possible scheme for a Delaunay-type mesh generation method involves the fol-
lowing successive steps (cf [7])

e Preliminary step: data input (point coordinates, boundary entities (faces and
edges) and internal entities (if needed), construction of a bounding box (to con-
sider a convex context), mesh of this box with five tetrahedra.

e Generation of the mesh of the box: point insertion using the Delaunay kernel.

o Constrained boundary mesh construction: find and recover all missing specified
edges and faces, identification of the connected components.

e Internal point creation and insertion: (A) Analysis of the current (internal) mesh
edges, creation of points along these edges and point insertion, then back to (A).

o Mesh definition: remove all elements not strictly included inside the domain,
classification of the remaining elements with respect to the connected components.

e Mesh optimization: edge swapping, node relocation (vertex smoothing), etc.

This scheme is based on four basic algorithms, namely a point insertion al-
gorithm (the kernel), a boundary recovery algorithm, an internal point creation
algorithm and finally an optimization algorithm.

2.2 Incremental point insertion process

The Delaunay kernel is an incremental procedure allowing to insert a point in an
existing triangulation (we consider here a convex domain, any point to be inserted
being an internal point).

Let consider the Delaunay triangulation 7; of the aforementioned bounding
box, containing the first th points of the set of points to insert as element vertices.
Let consider the 7+ 1th point of this set, denoted as P. The Delaunay kernel allows
to construct, from 7;, the triangulation 7;4; containing P as mesh vertex. This
can be written as (cf. [11])

Tiyr =T:—Cp+ Bp (1)
where Cp is the cavity associated with the point P, namely the set of tetrahedra

of 7T; whose circumscribed sphere includes P, and Bp is the ball of P, e.g. the set
of tetrahedra obtained by joining P to the external faces of Cp.

2.3 Boundary recovery

Using the procedure (1) applied to the set of points of the domain boundary, we
obtain a mesh of the bounding box, such that the mesh vertices are, apart from the
corners of this box, the face vertices (the edge endpoints) of the boundary mesh.
However, this procedure does not usually ensure the existence of all constrained
edges and faces, thus preventing the extraction of an initial mesh of the domain
from the current mesh of the box. The current mesh must then be modified to
recover the missing boundary entities.

A set of topological mesh modifications (edge and face swapping), possibly
coupled with a point creation step (the so-called Steiner points), is iteratively
applied and leads, usually, to the sought result (cf. [9] and [17], for instance). The
domain is then correctly defined and internal points can be introduced.

2.4 Internal point creation

The proposed method consists in analyzing the internal mesh edges and, even-
tually, creating points along these edges. Once all the points have been created,
they are then inserted using again the algorithm (1).

Let AB be a current mesh edge and let A4 and hp be the desired sizes at points
A and B!. The aim of the method is to decide whether or not it is necessary to
construct one or more point along AB, and, if yes, how many point have to be
created. Let n be this number of points, the locations of these points have to be
determined in order to saturate the edge according to a smooth distribution.

Let consider an arithmetic progression for this distribution of points. Hence,
cf. [10], if A(0) = ha and h(n + 1) = hp are the sizes respectively associated with
Py = A and with P,; = B, it is then possible to define a series as

oo = h(0)+r
a, = hin+1)—r (2)
&; = d(P,, Pi+1)

where d(P;, P;41) is the (Euclidean) distance between P; and P4y, and r is the
reason of the progression. The problem is equivalent to solve the system

{Eo“" = 4 (3)

Qip1 = o+
to find both r and n, d being the length of AB. We deduce

2d
TR0 +h(n+1) !)

n

1If A is a boundary vertex, its size is set as the average value of the edge lengths of all
boundary edges sharing A. If A is an internal vertex, the size h4 associated with A is known, it
results from an interpolation at the time A has been created.

3

and
_ h(n+ 1) — h(0)
r= — : (5)

As n is an integer, the solution is eventually modified so that n and r lead
to an exact discretization of the current edge. Once n and r are known, the
a;’s are determined and the series of points is fully defined. A value h is then
associated with each point, this value being computed from the corresponding
values associated with the supporting edge.

This process is iterated for all mesh edges and the resulting set of points is
then filtered. The filtering operation is required as the vertices are properly or-
dered with respect to each edge independantly, although this property may not
hold globally (for instance in case of vertices contructed from neighboring edges
emanating from a unique point). The points retained are then inserted via the

relation (1) and the whole process is iterated as long as mesh edges need to be
sudivided.

2.5 Mesh optimization

The mesh resulting after point insertion is then optimized to improve the element
shape quality. The optimization procedure consists in

e removing a free face (swapping),
e removing a free edge (local remeshing),

e removing a free edge by a colapsing operation,

relocating a free node,
e removing a free vertex,

as long as the mesh quality is improved. The mesh quality criterion is globally

defined as

QT = max Qx (6)

and, for each element, a shape quality value is defined as

hma:l,‘
Qkx =« " (7)

where o is a normalization coefficient, A, is the diameter of the element K
considered and pg is the in-sphere radius. This quantity measures the shape of
the element and is the so-called element shape quality.

4

3 Size map specification

The classical method, as briefly described above, is governed by the sole nature of
the mesh of the boundary of the domain. To make the control more accurate, ad-
ditional information regarding the desired sizes in some region of the domain need
to be specified. Several solutions have been proposed to supply this information.
We briefly recall the three most commonly used approaches.

3.1 Source points

In this approach, several source points are supplied inside the domain. A source
point is defined by its coordinates and a value h, corresponding to the desired
element size in its neighborhood. The relevant information can be taken into
account in two ways

e cither each source point becomes a mesh vertex and will contribute (via its

k) to the mesh edge analysis (the classical method described above is used
here),

e or each source, later possibly inserted as a mesh vertex, has an influence in
an area defined by proximity.

The first approach is quite easy to implement and has been described in [7] (cf. the
example given hereafter). However, the second approach is more tedious to imple-
ment and requires the determination of all regions of influence where the different
sources interact one with each other.

3.2 Specific structure

In this case, the size specification is supplied by an adequate structure (usually
very simple, a regular grid, an octree, etc,) and the way to use it. For example, if
we consider an octree structure (cf. [3] or [18]), each octant codes the desired size
in its neighborhood either via a value or directly via its size or even by supplying
the octant vertices as mesh vertices. It is easy to realize that the resulting size is
strongly dependant on the nature of the octree (depth level, ...). The reader is also
refered to [13] where this technique is used within an advancing-front method.

3.3 Background mesh

In this approach, a so-called background mesh is supplied with sizes specifications
at the vertices. This approach seems obvious, especially within a mesh adaption
scheme. The background mesh at stage ¢ is the mesh at stage 7 — 1 provided the
mesh vertices contain the desired information (obtained via the error estimate, for
instance). In the following sections, this approach is the one we retain (apart from
the first test example).

4 Internal point construction

The same idea as the classical method is followed here. The current mesh edges are
analyzed to construct the internal points. For a given edge, the distance between
two consecutive points is set to one, this unit length being measured with respect
to the size map. We precise now the notion of unit length.

4.1 TUnit edge length

The sole lengths considered here are the edge lengths, evaluated with respect to
the size map. Let AB be an edge and h(t) be the size specification function (¢
varying between 0 and 1, such that ¢ = 0 at point A and ¢ = 1 at point B), the
length of the straight segment AB is defined as (cf. [2])

lap = duB /01 7@%)- dt (8)

where d4p represents the (usual) Euclidean distance of AB.
In our case, the function h(t) is known in a discrete manner (e.g. at the
background mesh vertices), thus the above formulation is approximated. Hence,

the edge length AB is
e if h(A) and h(B) are the sole values known

lap = ng (h(lA) + h(lB)) (9)

e or, if besides h(A) and h(B), the sizes h(M;) at n points M;, (= 1,n),
along AB are known, (M, = A and My41 = B), then

lag = Y lMiys | (10)
1=0
in addition (cf. Formula (9))
dug, | 1

The proposed method is based on the knowledge of the points M; and the sizes h;
associated, the background mesh is used to extract this information.

4.2 Background mesh interpolation

For each edge (of the current mesh), the background mesh (denoted as 7r) is used
to extract the information related to the desired sizes. Let AB be a given edge,
the intersection between AB and Tr is performed to find,

6

e which element of 7z contains A,
e which element of Tr contains B,

e every elements of T intersected by AB.

This operation is based on the algorithmic localisation of a point in the mesh.
This type of approach works well only in a convex environment. Therefore, the
implementation of this algorithm must be carefully and judiciously peformed, as
T is not necessarily a convex domain.

At completion, the set of elements of T intersecting the edge AB is clearly
identified as well as the set of points M; (introduced above) and their relative
sizes h;, obtained using an interpolation based on the sizes h of the element of T
including these points.

4.3 Edge analysis and point creation

The edge analysis consists in computing the edge length and in comparing this
length to one. Let AB be the current edge and let M; (i = 1,n) be the set of
points considered above, then l4p is obtained using the Relationship (10). The
construction of these points along AB is performed using the following algorithm

e [=0.
e Loopfori=0,n

-Il=1+ lMeMi+1
- (A)-ifI>1
* introduce a point between M; and M;yy at a unit distance with the
previous points (Mg = A to start),
* [=1 — 1 back to(A).

e End loop.

The sizes h of the newly created points are computed using an interpolation
between the sizes along the segment M; M, ;. After all edges have been processed,
the set of points is filtered (to avoid conflicting points created along neighbouring
edges).

The remaining points are then inserted using the Relationship (1) in the current
mesh and the whole process of edge analysis is iterated, as long as edge lengths
longer than 1 are encountered.

Notice that, in practice, the value 1 is not the exact value used in the compu-
tational scheme. Indeed, the edge length is usually not an integer value and thus
cannot be exactly subdivided into unit length segments). Moreover, if an edge,
which length is longer than 1 and smaller than a given threshold value, is splitted
may lead to two edges having a length violating the requirement (instead of one
edge in the original configuration).

5 Mesh optimization

The aim of this stage is to improve the edge lengths while preserving an acceptable
element shape quality.

5.1 Shape optimization

This operation is similar to the classical case (cf. above) and involves the conven-
tional set of mesh modifications.

5.2 Size optimization

This operation is a specific characteristic of the governed mesh generation scheme.
The basic tools are similar to those of the classical case, at least formally speaking.
The aim is, while preserving an acceptable element shape quality, to analyze the
current mesh edges having an incompatible length (practically, the number of
such edges is reduced, at least when the size map does not contain any dramatic
variation). Three mesh modification tools are specifically used

e an edge colapsing operator to remove an edge too short by merging its two
endpoints into one,

e an edge splitting operator to subdivide an edge too long into two sub-edges,
e a unit length node relocation operator.

The two first operators are classical (the only difference being the way to compute
the edge lengths). The last operator can be written as, if P is the point to be

relocated p.p
. _ p. it T
Pi =P+ mp 5y b (12)

where the P;’s are the points of the existing edges PP; (the P;’s represent the
vertices, different of P, of all tetrahedra sharing P) and h; is defined such that
Ipp; = 1. Thus, we obtain the points P;, optimal poisitions of P respectively to
the edges PP; and a new average point is deduced which is used to define the new
location of the current point P.

5.3 Efficiency coefficient

Let I; be the length of the edge ¢ with respect to the size map. Th efficiency coef-
ficient of the mesh is defined as the average value of the squares of the differences
to 1 of all mesh edge lengths (let na be the number of mesh edges), hence

na 2

i=1 ei (13)

na

T=1-—

Withe,’=1—liifl,'<10rei=1—ll—iifli>1.

This coefficient seems adequate to quickly estimate the mesh quality with
respect to a given size map. Table 1 reports the sensitivity of this measure, {
being constant for all mesh edges (which is highly unlikely although it shows the
effect of the size variation on 7) and indicates that the edge lengths are [times
too long or too short (a value [= 5 or [= 0.2 means that all edges are 5 times too
long or 5 times too short). The optimal value is [= 1 and practically, any value
greater than 0.91 ensures a reasonable mesh quality with respect to the size map.

l 100 20| 10 5 3 21 V2 1.3 1.2 1.1] 1
T]0.019 [0.097 | 0.19 | 0.36 [0.51 | 0.75 | 0.91 | .9467 | .9722 | .9917 | 1.

Table 1: Sensitivity of the efficiency coefficient.

The reader is refered to this table in order to interpret the numerical results
described hereafter.

5.4 TUnit surface remeshihg

Let assume the surface to be meshed is geometrically defined, either analytically
or via an adequate mesh.

If the surface is directly known, the useful information can be extracted from
the re-meshing process (using, for instance, queries to a geometric CAD modelling
system). On the other hand, if the surface is defined from a mesh, the latter is
used to construct a geometric support (cf. [8]). This support emulates, in some
sense, the geometric modelling system and the information (normal, tangent plane,
curvature, ...) can be extracted, too.

Let assume a given arbitrary mesh (which can be the mesh acting as support),
we would like to introduce a method allowing to construct a new mesh with respect
to a given property. This problem can be seen as a remeshing problem. The
information required to construct such a mesh are related to

e the snapping of a point onto the surface,

o the knowledge of the surface geometry at a given point (radii of curvature,
minimal of the principal radii of curvatures,...).

Therefore, we define several local operations allowing to
e create a point,
e remove a point,

e swap an edge.

These operation use almost the same local operators as the mesh optimization
procedure. More precisely, from the topological point of view, the following tools
are required

o edge swapping,
e “polygon” retriangulation (to remove a vertex).

Any surface can be remeshed using this basic set of tools. The main idea
consists in remeshing so as to create unit edge lengths (using a metric related to
the geometry) while preserving the element shape quality and the accuracy of the
geometric approximation. Notice that we consider the remeshing of the ridges
prior to any other remeshing operation.

6 Results

Several mesh examples are provided in this section to illustrate the governed mesh
generation method. Notice that, the proposed method follows the general scheme
introduced above and only the internal point creation and optimisation stages
have been modified.

The first set of examples concerns the case where one and two source points
have been introduced. The other examples are governed by a background mesh
for which a size function is analytically specified at the vertices (in this way, we
simulate a situation which is more realistic than if an analytical size function is
used everywhere) . The first example assumes a constant boundary (the surface
mesh respects the size map) as for the other examples, the surface needs to be
remeshed at every stage of the iterative scheme (the last example concerns a non-
convex domain).

6.1 Example 1 (constant boundary) with sources

Let consider two examples. The domain corresponds to a sphere of radius 1,
centered at the origin. The surface, of constant mesh size, dictates an almost
constant size of the order of 0.08.

A source point is supplied (Figure 1), defined by its coordinates, (z = .25,y =
.25,z = .50), and the size is set to h = .025. This point acts like an attractor.
The mesh refinement is more important in the vicinity of this point. The second
example (Figure 2) includes two source points, (z = .25,y = .25,z = .50) and
(z = —.25,y = —.25,z = .50) and the sizes are respectively h = .015 and h = .30.
The first point has an attractive influence as the second as a repulsive effect. A
slice corresponding to the plane z = .5, is given for each example.

The mesh of the Figure 1 contains 171 151 tetrahedra, the mesh of the Figure 2
contains 107 404 tetrahedra. In these examples, the mesh generation speed is about
800000 tets per minute (HP9000/C180).

10

>

A

=
O
4:.(¥
g!
7N

VA)

=
]
==
1
LA
s
IVAVAN

Z
E
\7

ax

< LT NSRS
S >: ;4&5‘ ‘54 “\ﬁ&iiﬂﬂg}
S s
N RS
NRSSRRSISERE ok RS
NEReRE e X
SR

Figure 1: Slice through the mesh at Figure 2: Slice through the mesh at
z = .5 (one source). z =.5 (two sources).

This approach, using source points as vertices, is pretty fast (the speed-up is
the same as the classical mesh generation method). Although it presents some

drawbacks, mainly related to
o the difficulty to supply the source points,

e the effect of these points (not exactly predictible),

e ctc.

Hence, depending on the application, this approach can be either adequate or

unpredictible.

6.2 Example 1 (constant boundary) with background mesh

The domain considered is a sphere of radius 1, centered at the origin. The size
map is analytically defined using the following relationship

h(z,y,z) = 0.45 x ||d — .15|| x ||d — .65|| + 0.261

where d is the distance between the point (z,y,) and the origin. Any slice through
a plan z = ct constant, shows two circles, centered at the intersection between the
slice plane and the z axis.

The mesh generation speed (on these examples) ranges between 300,000 and
450,000 elements per minute (HP9000/C180).

In this relatively simple example (there is no large size variations), the conver-
gence is quickly obtained (cf. Table 2, where np, ne, T represent respectively the
number of points, elements and the efficiency coefficient, per is the percentage of

11

a
!

f
)
3»

Figure 3: Slice through the current

mesh, z = 0.

l
N
"

J

il
) ’A"’
Koy
> ¥ \
W

N
i
i

1

W
XU
i
gy
N
Vil
J
X
%

i
D
Al

A

v
N
Waza)

Vi)

i
‘—

0

8

V7%

A
U
;s'
o
\

W
{
i
)X: -.
5
i
X
Y
/N
N

/
\
i

bl
74?"

)

I
Wi

Z
0
DA
VR
A
7
0
R

¥

7\
7\
5
X
N

;1
ol
VAV
W

=

N
Y
i

{

Y/

‘

o)
ol

%
!.

4
4

)
)}
JN

i

\\‘;r

i

Y
NN

Figure 4: Slice through the mesh at
iteration 4, z = 0.

- np ne T | per Ql1—-212-3
Initial mesh | 1,663 8,340 | .5857 3211 98 1
Iteration 1 | 48,514 | 289,746 | 0.9719 | 94 | 4.97 96 2
Iteration 2 | 52,977 | 316,927 | 0.9749 | 97 | 4.47 97 2
Tteration 3 | 53,426 | 319,731 |} 0.9755 | 97 | 4.99 97 2
Iteration 4 | 53,642 | 321,081 | 0.9759 | 98 | 4.89 97 2
Iteration 5 | 53,718 | 321,545 | 0.9761 | 98 | 3.90 97 2
Iteration 6 | 53,798 | 322,070 | 0.9763 | 98 | 4.26 97 2
Iteration 7 | 53,887 | 322,553 | 0.9765 | 98 | 4.11 97 2

Table 2: Statistics relative to the different iterations.

edges having a length between % and v/2). Moreover, @ being the mesh qual-

ity, the column 1 — 2 (resp. 2 — 3) reports the percentage of elements having a
shape quality between 1 and 2 (resp. 2 and 3). The result is almost stable after
iteration 3.

6.3 Example 2 (free boundary) with background mesh

The domain considered is a simple sphere of radius 1, centered at the origin. The

size map (sensibly more constrained than the previous example) is analytically
defined as

h(:L', Y, z) = E%%(hi(w» Y, z))

where
hy(z,y,7) = 1.5 x ||dy — 1.|| + 0.006

12

ho(z,y,2) = 1.5 X ||dy — 1.|| 4+ 0.006
hs(z,y,2) = 1.5 x ||ds — 1.|| + 0.012
ha(z,y,2) = 1.5 x ||dy — 1.|| + 0.012
hs(z,y,2) = 1.5 x ||ds — 1.|| + 0.018
he(z,y,2) = 1.5 x ||dg — 1.|| + 0.018

where d; is the distance between the points (z,y, 2) and (1.,0.,0.), dg is the dis-
tance to the point (—1.,0.,0.), ds is the distance to the point (0.,1.,0.), dy is the
distance to the point (0.,—1.,0.), ds is the distance to the point (0.,0.,1.) and de
is the distance to the point (0.,0.,—1.). Practically, this size map is only known
at the vertices of the background mesh at the current iteration.

Figure 5: Initial surface mesh (122 Figure6: Surface mesh at iteration I
vertices and 240 triangles). (3,489 vertices and 6,974 triangles).

We consider, at first, the evolution of the surface mesh relatively to the iter-
ations (Figures 5 to 12). The Figures show the effect of the background mesh
on the capture of the controlling size map. The mesh of the Figure 5 missed the
size field, indeed, this mesh has been generated without any knowledge of the size
map. The mesh of the Figure 6 does not capture the size map and also is locally
over refined. This phenomenon can be explained by the existence of edges hav-
ing size specifications too small at the endpoints and no additional information
is supplied by the background mesh. Hence, these edges are subdivided in too
many segments. The mesh of the Figure 7 is a fairly good mesh with respect to
the size map, although it presents locally a lack of mesh density. The final mesh
(Figure 8) is a satisfactory mesh.

The Figures 9 to 24 show several slices through the volumetric mesh at different
iterations.

The following table reports the statistics relative to the diffrent iterations with
the parameters introduced in Table 2.

13

Figure 7: Surface mesh at iteration 3 Figure 8: Surface mesh at iteration 7
(3,964 vertices and 7,924 triangles). (4,766 vertices and 9,528 triangles).

Figure 9: Slice through the initial Figure 10: Slice through the mesh at
mesh, z = 0. iteration 1, z = 0.

14

Figure 11: Slice through the mesh at Figure 12: Slice through the mesh at
iteration 3, z = 0. iteration 7, z = 0.

7

Oy
s

Figure 13: Slice through the initial ~ Figure 14: Slice through the mesh at
mesh, z = 0.25. iteration 1, z = 0.25.

15

Figure 16: Slice through the mesh at

iteration 7, z = 0.25.

Figure 15: Slice through the mesh at

= 0.25.

iteration 3, z

/74

I
Zy

7

7N

SE

2>
V24

&7
N

€A

pZAY

sy A=
L

ZA

AV

N

e

SWAR V=

N

- N

<2
s
S

LS

Figure 18: Slice through the mesh at

iteration 1, z = 0.50.

Figure 17: Slice through the initial

mesh, z = 0.50.

16

Figure 20: Slice through the mesh at
0.50

iteration 7, z

_" e

ST

N

IS2

AN

N4
S

ay,

<7

Figure 19: Slice through the mesh at
3, z=0.50

iteration

VAVAY
Rk
AVONAY

z

Figure 22: Slice through the mesh at
, 2 =0.75

tteration 1

17

= 0.75.

z

J

Figure 21: Slice through the initial

mesh

Figure 23: Slice through the mesh at Figure 24: Slice through the mesh at

iteration 8, z = 0.75. iteration 7, z = 0.75.
- np ne T | per RQl|1-2|2-3
Initial mesh 277 1,200 | 0.515 71184 | 100 -

Iteration 1 23,023 124,362 | 0.814 | 37 | 47. 81 11
Iteration 3 | 115,215 647,119 | 0.9448 | 78 | 12. 78 20
Iteration 7 | 253,068 | 1,416,617 | 0.9616 | 86 8. 74 24

Table 3: Statistics relative to the different iterations.

The mesh generation speed ranges from 200,000 to 350,000 elements per
minute (HP9000/C180).

6.4 Non-convex example (free boundary) with background
mesh

This example corresponding to a mechanical device (data courtesy of the Mac
Neal-Schwendler Corp., USA) is representative of a class of problems (non-convex,
arbitrary complex shape, thin sections,...). The controlling size map is analytically
defined, and constructed from the bounding box (a parallelepiped), a size variation
is specified along six spheres centered in the middle of the faces of the box. The
desired size increases as the distance from the spheres increases.

The Figure 25 shows the initial triangulation of the surface of this object and
the Figures 26 to 28 show the meshes corresponding to the iterations 1 to 3 of the
adaption loop.

The four last figures show slices for a plane z + y + z + 0.19 = 0 through the
volumetric meshes at iterations 0 (original mesh, not adapted) and 3. Table 4

18

)

7>

)
;4,

X
2
/7
y

]

Y

v
Vi

K] L‘\
SN R
DN/ 4, WOV D
‘*»’w{v DNKIR
OCRARR RS
R
NOVER
NV, AV, AV LN
SRS
B

mmuv..v“vﬂ‘g‘%\\,
;.

RIS
RSN
TSRIN R
I N

Figure 25: Initial surface mesh (data
courtesy of MSC)

Figure 26:
tion 1.

Surface mesh at itera-

<§

S AN
VAV, SVaN
T,

TaS
L
2t

Figure 27: Surface mesh at itera-
tion 2.

Figure 28: Surface mesh at itera-
tion 3.

19

reports the statistics about the meshes.

- np ne T | per Q|l|1-2[2-3
Initial mesh | 3,703 | 12,993 | 0.784 | 33 | 5.63 95 3
Iteration 1 | 26,701 | 126,296 | 0.905 | 61 | 7.60 90 8
Iteration 2 | 59,398 | 306,830 | 0.959 | 86 | 7.69 89 10
Iteration 3 | 70,292 | 366,798 | 0.967 | 91 | 11.00 89 10
Iteration 4 | 76,888 | 405,436 | 0.971 | 94 | 11.51 90 9

Table 4: Statistics relative to the mechanical device 'lThmount’

Figure 30: Volumetric mesh at iter-

Figure 29: Initial volumetric mesh. ;
ation 1.

The mesh generation speed is about 300,000 elements per minute (HP9000/C180).
The results seem reasonable, as compared to the statistics and the related figures.
This indicates that no extra difficulty is expected to process a realistic object with
respect to the academic example.

7 Extensions and conclusions

The validation of the proposed mesh generation method is ongoing, especially for
industrial application examples. In particular, solid mechanics problems have to be
investigated, within a complete mesh adaption loop (mesh generation, numerical
computation, error estimate) where the size function is obtained uaing the error
estimate (and not through an analytical expression). In addition, the proposed

20

Figure 31: Volumetric mesh at iter- Figure 32: Volumetric mesh at iter-
ation 2. ation 3.

approach, including the whole reconstruction of the mesh at each iteration, has to
be compared with local mesh modification methods.

From the technical point of view, it seems important to improve the mesh
generation speed by at least a factor 2, to match the classical mesh generation
speed.

Finally, the extension to the generation of anisotropic meshes is obvious, es-

pecially by changing the notion of unit length and by generalizing the Delaunay
kernel (cf. [2]).

References

[1] T.J. BAKER, Generation of tetrahedral meshes around complete aircraft, Numerical
grid generation in computational fluid mechanics’88, Miami, 1988.

[2] H. BoroUcHAKI ET P.L. GEORGE, Triangulation de Delaunay et métrique rieman-

nienne. Applications aux maillages éléments finis, Revue européenne des éléments
finis 5(3), 323-340, 1996.

[3] J.H. CHENG, P.M. FINNIGAN, A.F. HATHAWAY, A. KELA AND W.J. SCHOEDER,
Quadtree/octree meshing with adaptive analysis, Numerical grid generation in com-
putational fluid mechanics’88, Miami, 1988.

[4] P.G. CIARLET, The finite element method for elliptic problem, North Holland, 1978.

[5] P.L. GEORGE, Automatic mesh generation. Applications to finite element methods,
Wiley, 1991.

21

[6] P.L. GEORGE, Automatic Mesh Generation and Finite Element Computation, in
Handbook of Numerical Analysis, vol IV, Finite Element methods (Part 2), Numer-
ical Methods for Solids (Part 2), P.G. Ciarlet and J.L. Lions Eds, North Holland,
69-190, 1996.

[7] P.L. GEORGE, Improvement on Delaunay based 3D automatic mesh generator,
Finite Elements in Analysis and Design, 25(3-4), 297-317, 1997.

[8] P.L. GEORGE ET H. BOROUCHAKI, Triangulation de Delaunay et maillage. Appli-
cations aux éléments finis, Hermes, Paris, 1997.

[9] P.L. GEORGE, F. HECHT AND E. SALTEL, Automatic mesh generator with specified
boundary, Comp. Meth. in Appl. Mech. and Eng., 92, 269-288, 1991.

[10] P.L. GEORGE, F. HECHT AND M. G. VALLET, Creation of internal points in
Voronoi’s type method, Control and adaptation, Adv. in Eng. Soft., 13(5/6), 303-
313, 1991.

[11] P.L. GEORGE, F. HERMELINE, Delaunay’s mesh of a convex polyhedron in di-
mension d. Application to arbitrary polyhedra, Int. Jour. Num. Meth. Eng., 33,
975-995, 1992.

[12] R. LOHNER, P. PARIKH, Generation of 3D unstructured grids by advancing front
method, AIAA 26 Aerospace Sciences meeting, Reno Nevada, 1988.

[13] A. RASSINEUX, Maillage automatique tridimensionnel par une méthode frontale
pour la méthode des éléments finis, PhD Thesis, Nancy I, 1995.

[14] M.S. SHEPHARD, F. GUERINONI, J.E. FrLAHERTY, R.A. LubwIG AND P.L.
BAEHMANN, Finite octree mesh generation for automated adaptive 3D flow analysis,
Numerical grid generation in computational fluid mechanics’88, Miami, 1988.

[15] M.G. VALLET, Génération de maillages éléments finis anisotropes et adaptatifs,
PhD Thesis, Paris 6, 1992,

[16] D.F. WatsoN, Computing the n-dimensionnal Delaunay tesselation with applica-
tions to Voronoi polytopes, Computer Journal 24(2), 167-172, 1981.

[17] N.P. WEATHERILL, The integrity of geometrical boundaries in the 2-dimensional
Delaunay triangulation, Comm. in Appl. Num. Meth., 6, 101-109, 1990.

[18] M.A. YERRI, M.S. SHEPHARD, Automatic 3D mesh generation by the modified-
octree technique, Int. Jour. Num. Meth. Eng., 20, 1965-1990, 1984.

22

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

