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ABSTRACT :

A variational formulation of doubly curved shallow shells is presented. The analysis used Reissner’s two-

field variable variational principle with the transverse displacement w and Airy stress function F as field

variable. Euler-Lagrange equations and boundary conditions are obtained. A finite element based on this

variational principle preserving C(1) continuity is formulated, and your eigenvalues for free vibrations

and buckling analyses are abtained. Applications for free vibrations and buckling analysis in

MSC/NASTRAN model are given as well as their respective geometry shape. Several numerical

calculations are presented. The results obtained are discussed and are compared with previous analytical

solutions and numerical calculations.
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1.  INTRODUCTION

The finite element method is a numerical procedure for analyzing structures and continua. Usually
the problem addressed is too complicated to be solved satisfactorily by classical analytical
methods. The problem may concern stress analysis, heat conduction, or any of several other areas.
The finite elements procedure produces many simultaneous algebraic equations, which are
generated and solved on a digital computer. Finite element calculations are performed on personal
computers, mainframes, and all sizes in between. Results are rarely exact. However, errors are
decreased by processing more equations, and results accurate enough for engineering purposes are
obtainable at reasonable cost.
The finite element method originated as a method of stress analysis. Today finite elements are also
used to analyze problems of heat transfer, fluid flow, electric and magnetic fields, and many others.
Structural analysis of plates and shells using two field variables, the transverse displacement w and
the Airy stress function F, has been investigated by several authors. Reissner [1] introduced a
variational principle with w and F being the field variables. Based on an order of magnitude
analysis to justify the omission of the inplane inertial, Reissner [2] extended the application to
dynamic analysis of shallow shells.
The structural dynamic analysis of plates and shells has usually been performed using the
Hamilton’s principle with the displacements u,v and w  taken as the field variables of the problem.
Alternatively, the problem can be formulated using a two field variable modified functional with
the transverse displacement w and Airy stress function F, as the field variables of the problem.
Bismarck-Nasr [3] presented a formulation using the transverse displacement w and Airy stress
function F, as the field variables for the problem of free vibration analysis of isotropic cylindrically
curved shallow shells. The Euler-Lagrange equations governing the problem and the boundary
conditions were obtained, It was shown that the boundary conditions on F are simple and direct to
apply as on w. The variational principle was used to derive a C1 continuity rectangular finite
element end numerical results of buckling analysis, free vibration for freely supported square
curved panels and structural dynamic response problems of pre-loaded doubly curved isotropic
shallow shells were presented.
Several numerical reuslts are presented and are compared with previous analytical solutions,
numerical calculation, experimental findings and with MSC/Nastran models.

2.  PROBLEM FORMULATION

The variational equation of thin cylindrically curved shallow shells and including the effect of the
curvature of the shell in the transverse direction, the variational equation of an isotropic doubly
curved shallow shells, considering the effect of the work done by an initial pre-load inplane
prestress load, Nx , Ny and Nxy  , can be write as,
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where the transverse displacement w and Airy stress function F, are the functions subjected to
variation. D=Eh3/12(1-ν2), E is Young’s modulus, h is the shell thickness and ν is Poisson’s ratio.
The Airy stress function is defined as.
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Performing the variational operation, grouping terms, and through application of Green’s theorem,
the Euler-Lagrange equations governing the problem are obtained and read,
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and the boundary condition for an edge ν = constant , are given by:

1 - Clamped edges w = w,η =0, and at a corner F,ηζ =0;

2 - Free edges F = F,η =0, and at a corner Mηζ =0 (or w,ηζ =0);

3 - Simply supported edges w = 0 and at a corner F,ηζ =0;

4 - Freely supported edges w=F=0.

A finite element solution for the problem at hand can be performed using rectangular elements

preserving C1 continuity based on the functional given in Eq.(1). Thus, we can write,
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where Hmn are first order Hermitian polynomials. Using the standard finite elements technique we
obtain for each element a set of two equations cast in the form below:

[ ] { } [ ] { } [ [ ] [ ] [ ] ]K w K F N K N K N K w M www wF xx G Nxx yy G Nyy xy G Nxy ww ,tt+ + + + + ={ } [ ] { } 0

[ ] { }K w K FwF
T

FF{ } [ ]+ = 0
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The element stiffness matrix [kww] is the same as the stiffness matrix of the sixteen degree of
freedom plate bending element given by Bismarck-Nasr [8], the compatibility matrix [kFF] is
obtained from the stiffness matrix [kww] by changing the sign of ν and multiplying the whole matrix
by 1/DEh The elements of the coupling matrix [kwF] are given by,
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R

S n ,n R m ,m
R

S m ,m R n ,nij
x

j i j
y

j i j iwF
= +1

1 2
1

1 2a i b b a( ) ( ) ( ) ( )              (6)

where the (4x4) matrices S1a and R2b  and element mass matrix are given by Bismarck-Nasr [8].

Using now the standard finite element assembly technique and applying the boundary conditions,
we obtain for the whole structure the following two matrix equations,

[ ] { } [ ] { } [ [ ] [ ] [ ] ]K w K F N K N K N K w M www wF xx G Nxx yy G Nyy xy G Nxy ww ,tt+ + + + + ={ } [ ] { } 0

[ ] { }K w K FwF
T

FF{ } [ ]+ = 0
(7)

We observe that the degree of freedom {F} can be eliminated using the compatibility equation of
the system of equations, i.e., the second equation of the system (7), to obtain,

[[ ] [ ] ]{ }K N K N K N K M wxx G Nxx yy G Nyy xy G Nxy wweq + + + − =[ ] [ ] [ ] ω 2 0                                  (8)
where,

[ ] [ ] [ [ ] [ ]K K K K Kww wF FF wFeq
T= − −] 1                                                                                          (9)

An examination of Eq.(9) reveals that the computational effort required for the solution of the free
vibration problem when the present formulation is used is equivalent to that of a flat plate. Further,
the inplane boundary conditions are applied on F, F,x ,F,y and F,xy and are all nodal degrees of
freedom of the finite element model.

3.  NUMERICAL RESULTS AND DISCUSSIONS

The present formulation permits the studies of structural dynamic response problems of pre-loaded
plates and shallow shells. As special cases are included the free vibration analysis of plates and
shallow shells and the buckling analysis of plates and shallow shells. In the following some of the
results obtained using the present formulation are reported and are compared with previous
investigation whenever possible as well as MSC/Nastran model analysis.

3.1  - Buckling analysis of plates square simply supported and clamped on all edges

This tables show the results obtained using the present formulation and these are compared with
previous analytical solutions and others finite elements formulations as well as MSC/Nastran
model analysis.

Table 3.1.1. Buckling coefficients, Ncr=Nxxa2/π2D  simply supported on all edges.

Triangular Finite Element Rectangular Finite Element
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Timoshenko

(exact)

Allman

1971

Clough

1968

Anderson

1968

Kapur e Hartz

1966

Dawe

1969

Carson

1969

This

Work

MSC

Nastran

Uniaxial

(4,00)
4,031 4,126 3,72 3,770 3,978 4,001 4,222 4,421

Biaxial

(2,00)
2,016 - - - 1,989 - 2,000 2,422

Shear

(9,34)
10,131 - - - 9,481 9,418 9,416 9,523

Table 3.1.2. Buckling coefficients, Ncr=Nxxa2/π2D  clamped on all edges.

Triangular Finite Element Rectangular Finite Element
Timoshenko

(exact)

Allman

1971

Clough

1968

Anderson

1968

Kapur e Hartz

1966

Dawe

1969

Carson

1969

This

Work

MSC

Nastran

Uniaxial

(10,07)
10,990 - 9,30 9,284 10,147 - 10,192 11,043

Biaxial

(5,30)
5,602 5,625 5,043 4,975 - 5,3271 5,326 6,357

Shear

(14,71)
17,382 - - - - 15,043 15,122 17,582

3.2 -Free vibration analysis of plates and cylindrically curved shallow shells

This tables show the results obtained using the present formulation to condition freely supported
on all edges and these are compared with the Reissner analytical solution reported on 1955 and
MSC/Nastran model analysis. From the results obtained, it can be observed that good accuracy
was obtained using the present formulation with only a mesh size of 4 by 4 elements.

Table3.2.1. Natural frequency parameter of plate, Ω=ρha4ω2/π2D
a/b=1, : 1/Rx = 1/Ry = 0

mode m n This work MSC/Nastran Reissner 1955
1 1 1 2,00932 2,00945 2,00000
2 1 2 5,00000 5,00023 5,00000
3 2 1 5,00000 5,00023 5,00000
4 2 2 8,00941 8,00992 8,00000
5 1 3 10,03123 10,06242 10,00000
6 3 1 10,03123 10,06242 10,00000
7 2 3 13,03223 13,06231 13,00000
8 3 2 13,03223 13,06231 13,00000
9 1 4 17,21627 17,32454 17,00000
10 4 1 17,21627 17,32454 17,00000

Table3.2.2.Natural frequency parameter of cylindrically curved shallow shells Ω=ρha4ω2/π2D
a/b=1, : 1/Rx = 0,001 cm-1 ; 1/Ry = 0



6

mode m n This work MSC/Nastran Reissner 1955
1 1 1 2,81532 2,95623 2,76444
2 1 2 5,10230 5,15632 5,05794
3 2 1 5,87379 5,98546 5,85865
4 2 2 8,22971 8,36954 8,22448
5 1 3 10,10363 10,11652 10,00728
6 3 1 10,40496 10,56231 10,57357
7 2 3 13,06285 13,07586 13,05294
8 3 2 13,50735 13,75423 13,26584
9 1 4 17,32312 17,36521 17,00148
10 4 1 17,70360 17,80523 17,37541

3.3-Presence of axial pre-load in the axial direction

The results presented are for free vibration analysis of cylindrically curved shallow shells for
clamped conditions on all edges in the presence of axial pre-load in the axial direction.

Table 3.3.1- Fundamental natural frequency parameter, Ω=ρha4ω2/π2D clamped for all edges
Cylindrically curved shallow shells with presence of an axial pre-load

N*=Nxxa2/π2D , a/b=1 , 1/R = 0,01cm-1

N*  kgf/cm Ω
0 9,6
5 8,8
10 8,0
15 7,3
20 6,2
25 5,1
30 3,4
35 0,0

It is to be observed the critical loading condition is obtain as a subproduct of this analysis and is
reached when a zero is observed.

4.  CONCLUSIONS

The analysis presented permits the free vibration analysis, combined buckling loads and structural
dynamic response in the presence of pre-loads.
It is show that the boundary conditions on Airy stress function are as simple and direct to apply as
for the boundary conditions on the transverse displacement. The element used in the analysis is
characterized by its high precision and direct application of the boundary conditions.
We showed to be Finite Elements Analysis a powerful tool in the study plates and shells stability.
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5.  EXEMPLES SHAPES OBTAINED OF MSC/NASTRAN

Simply Supported, µ=1, plate, uniaxial loading

Buckling Coefficients

λ=4,421 λ=9,371
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λ=14,656 λ=17,343

Simply Supported, µ=1, plate, biaxial loading

Buckling Coefficients

λ=2,422 λ=7,193
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λ=8,024
λ=12,301

Simply Supported, µ=1, plate, shear loading

Buckling Coefficients

λ=9,523 λ=9,523
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λ=13,152 λ=13,152

Clamped, µ=1, plate, uniaxial loading

Buckling Coefficients

λ=11,043 λ=16,384
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λ=27,235 λ=30,497

Clamped, µ=1, plate, biaxial loading

Buckling Coefficients

λ=6,357 λ=13,434
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λ=14,689 λ=20,263

Clamped, µ=1, plate, shear loading

Buckling Coefficients

λ=17,582 λ=17,582
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λ=22,308 λ=22,308

Freely Supported, µ=1, plate  -  Natural frequency parameter

Ω=2,00954 Ω=5,00023

Ω=5,00023 Ω=8,00992
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Ω=10,06242 Ω=10,06242

Ω=13,06231 Ω=13,06231

Ω=17,32454 Ω=17,32454

Freely Supported, µ=1, 
1

0
Rx

=  ,
1
Ry

= 0 001, cm-1   -   Natural frequency parameter

Ω=2,95623 Ω=5,15632

Ω=5,98546 Ω=8,36954
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Ω=10,11652 Ω=10,56231

Ω=13,07586 Ω=13,75423

Ω=17,36521 Ω=17,80523
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