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Abstract
When performing global/local analysis, the issue of connecting dissimilar meshes often
arises, especially when refinement is performed.  One method of connecting these
dissimilar meshes is to use interface elements.  In the previous Parts 1 and 2, curve and
surface interface elements, implemented for p-element edges and faces in
MSC/NASTRAN Versions 69 and 70.5, respectively, were presented.  In the current Part
3, the shell-to-solid transition interface element, being implemented to connect dissimilar
p-element edges with p-element faces, is presented with examples.  This transition
interface element completes the set of interface tools for global/local analysis.
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1 Introduction

The problem of connecting dissimilar meshes at a common interface is a major one in
finite element analysis.  One method of connecting these dissimilar meshes is to use
interface elements.

The first paper, Part 1 [1], described the curve interface elements implemented in Version
69 of MSC/NASTRAN for shell and beam p-element edges.  The background, theory,
implementation, and examples were also presented. The second paper, Part 2 [2],
described the surface interface elements implemented in Version 70.5 of
MSC/NASTRAN for solid and shell p-element faces.  The background, theory,
implementation, and examples were also presented.  The current paper, Part 3, describes
the shell-to-solid transition interface elements being implemented in MSC/NASTRAN
for solid p-element faces and shell p-element edges.  The background, theory, and
implementation are very similar to the previous parts and will be repeated and extended
here.  Examples will also be presented.

1.1 Applications
Dissimilar meshes can arise with global/local analysis, where part of the structure is
modeled as the area of primary interest, in which detailed stress distributions are
required, and part of the structure is modeled as the area of secondary interest, through
which load paths are passed into the area of primary interest.  Generally the area of
primary interest has a finer mesh than the area of secondary interest, and therefore a
transition area is required.  Severe transitions generally produce elements that are heavily
distorted, which can result in poor stresses and poor load transfer into the area of primary
interest.  Patches of elements may be removed from the global model and replaced by
denser patches for local detail.  An example is shown in Figure 1, where the boundaries
of the patches are bold.  In addition, the local elements may have a more complicated
topology than the global elements.

Figure 1: Example of Dissimilar Mesh from Global/Local Analysis.

In large system problems, different analysts or even different organizations may have
created different components of the model, such as the wing and the fuselage of an
airplane.  Unless they have carefully coordinated their efforts, the finite element meshes
of the different components may not match at the interfaces, as normally required, when
they are assembled.
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Dissimilar meshes can be created by automeshers, which may be required to transition
between large elements and small elements in a limited area.  An example is shown in
Figure 2, where the boundary is bold and the required transition is dashed.  Many
automeshers generate tetrahedral meshes for solids, and distorted tetrahedra may be more
susceptible to poor results.  Automeshers are often used in conjunction with shape
optimization procedures, where the shape changes are large enough to warrant
remeshing.  In these cases, it would be more efficient to remesh only the local part of the
model and interface it with the rest, rather than remeshing the entire model.  If the rest of
the model has not been remeshed, then the associated parts of the stiffness matrix need
not be recalculated, provided that the previous data has been saved.

Figure 2: Example of Dissimilar Mesh from Automesher.

In h-refinement, subdivided elements may be adjacent to undivided elements.  Without
some kind of interface element, the subdivision would have to be extended to the model
boundary or otherwise transitioned.  An example is shown in Figure 3, where the
boundary is bold and the required transitions are dashed.

Figure 3: Example of Dissimilar Mesh from h-Refinement.

1.2 Previous Methods
Much work has been done to resolve the element interface problem, with most of the
efforts concentrating on moving the nodes or writing multi-point constraint (MPC)
equations on the interfaces.  The first approach, moving the nodes, must take into account
the element distortions on both sides of the interface and provide the best redistribution
according to some criteria.  However, it is possible that one or both sides of the interface
may be represented only by previously generated stiffness matrices, in which case the
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nodes cannot be moved.  The biggest restriction of moving nodes is that both sides of the
interface must have the same number and type of elements.  Therefore, this method is not
practical for the general problem.

The second approach, using MPC equations, often is used for connecting elements of
different types.  For example, the midside node of a quadratic element may be
constrained to move linearly with the vertex nodes in order to match an adjacent linear
element, assuming that the vertex nodes for the two elements are coincident.  Other MPC
equations, such as splines, can handle more general cases.  However, MPC equations by
definition provide additional relationships for the existing degrees of freedom on the
interface, and in the process reduce the number of independent degrees of freedom.  If
there are no degrees of freedom created, this could result in additional local stiffness or
other non-physical effects in the model.

1.3 Current Method
The need and applications for reliable interface technology are great.  NASA Langley
Research Center has developed a method for analyzing structures composed of two or
more independently modeled substructures, based on a hybrid variational formulation
with Lagrange multipliers, and applied it to global/local demonstration problems for one-
dimensional [3-6] and two-dimensional [7] interfaces.  NASA has also developed the
technology for a solid-to-shell transition element for use with composites [8], and has
combined it with the one-dimensional interface element [8].

Under terms of a cooperative agreement between MSC and NASA [9], MSC has
extended and implemented this interface technology into MSC/NASTRAN for p-element
edges along a geometric curve, and for p-element faces over a geometric surface.
Currently MSC is implementing the transition interface technology for solid p-element
faces and shell p-element edges.  This agreement is part of NASA’s continuing effort to
transfer technology into the mainstream of industry as an aid in developing
competitiveness in the worldwide market.
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2 Implementation
The purpose of the shell-to-solid transition interface element is to connect a set of solid p-
element faces with a set of shell p-element edges, as shown in Figure 4, where the
boundary is bold:

Figure 4: Shell-to-Solid Transition Interface Element.

Neither the curve interface element (GMINTC), which interfaces p-element edges along a
common curve, nor the surface interface element (GMINTS), which interfaces p-element
faces over a common surface, has kinematic constraints to connect the shell degrees of
freedom to the solid.  Both also connect only entities of the same topological type.  The
shell-to-solid element connector (RSSCON) models clamped connection of shells to
solids by generating multi-point constraints with the shell degrees of freedom in the
dependent set [10].  However, it requires that the shell p-element mesh must align with
the solid p-element mesh with exact element-to-element correspondence.

Given these restrictions, it is possible to combine the GMINTC with the RSSCON to
create a shell-to-solid transition interface element.  In order to accomplish this, a
transition boundary, with both translations and rotations, is created, as shown in Figure 5.
This transition boundary maintains the element-to-element correspondence with the solid
p-element faces, so that the RSSCON can connect it with the solid p-elements, and
consists of p-element edges, so that the GMINTC can connect it with the shell p-
elements.
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RSSCON

GMINTC

Transition
Boundary

Figure 5: Transition Boundary (exploded view).

Since this is a more general form of the RSSCON, the RSSCON bulk data entry is being
enhanced [10].  There is another option, INTC, being added to the RSSCON, and for this
option, the required input is the boundary of shell p-element edges (GMBNDC) [1], the
boundary of solid p-element faces (GMBNDS) [2], and the curve interface properties
(PINTC) [1].
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3 Formulation
Given the implementation of the shell-to-solid transition interface element, the
formulation consists of two parts.  First is the formulation of the interface element, and
second is the formulation of the transition element.

3.1 Interface Element
The formulation of the interface element, which is a hybrid variational formulation using
Lagrange multipliers, is defined in summary as follows, using primarily the notation in
[3].   It is repeated in more general form here to include the dynamic case.  The complete
details for the static case may be found in [3-5,7].

The displacement vector{ }v  on the interface is defined in terms of the node and edge

coefficients{ }sq , which are defined on the interface elements, and interpolation

functions[ ]T , which is a matrix containing the functions for each field of the interface
displacement vector:

{ } [ ]{ }sqTv =

The displacement vector{ }ju  on each subdomain j is defined in terms of the node and

edge coefficients{ }jq  and interpolation functions [ ]jN , which is a matrix containing the

functions for each field of the subdomain displacement vector:

{ } [ ]{ }jjj qNu =

The Lagrange multiplier vector{ }jλ  on each subdomain j is defined in terms of the node

and edge coefficients{ }jα  and interpolation functions[ ]jR , which is a matrix containing

the functions for each field of the Lagrange multiplier vector:

{ } [ ]{ }jjj R αλ =

Defining the combined operator and material matrix [ ]jB , the density ρ , and the surface

tractions{ }jt ; and considering the potential energy for all the subdomains j with the

internal energy, inertial forces, and applied forces, and for the interface I with the
Lagrange multipliers; gives:
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where the inertial body forces:

jjj uF &&ρ−=

have been multiplied by a factor of one half since they are proportional loads.  Using the
standard assumption of simple harmonic motion for the frequencyω :

jj uu 2ω−=&&
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and expanding the vectors into their coefficients and interpolation functions gives:
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Defining the matrices of interpolation functions:

∫−=
I

j
T
jj dsRNM

∫=
I

j
T

j dsRTG

and substituting these, together with the standard definition of stiffness matrices[ ]jk ,

mass matrices [ ]jm , and load vectors{ }jf , into the potential energy gives:
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Partitioning the q  into iq , those node and edge coefficients on the interface, and oq , those
coefficients other than on the interface, gives:
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Deriving the Euler equations by taking the variations of the potential energy with respect
to the four groups of variables o

jq , i
jq , sq , and jα  gives:
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Each of the Euler equations has a physical interpretation.  Writing the Euler equations in
matrix form:
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This system of equations is symmetric, but not positive definite.  All of the interface
terms[ ]jM  and [ ]jG  appear in the stiffness matrix, with none in the mass matrix.  Had

damping been included, which generally takes the form of a load proportional to the
velocity, the result would have been similar.

3.2 Transition Element
The formulation of the transition element, which is based on the Reissner-Mindlin
assumptions, is defined in summary as follows, using primarily the notation in [8].   The
formulation for p-elements is an extension of that developed in [8].

The standard Reissner-Mindlin kinematic assumptions, where x and y are the membrane
directions and z is the normal direction of the shell, are given by [8]:
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Rearranging and linear interpolating these terms, where a and b refer to the lower and
upper solid surfaces, respectively, and c to the shell surface, and where λ is the fractional
distance of the shell surface from the lower to the upper solid surface:
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These equations are applied as multi-point constraints on the node coefficients for the
transition element, where the cu , cv , cw , c

xθ , and c
yθ  displacements correspond to the

displacement vector{ }v  in the previous section.  For the p-element transition, they must
also be applied to the hierarchic edge coefficients in a distributed manner.
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4 Example Problems
Several sets of example problems were analyzed, in order to test the capabilities of the
shell-to-solid transition interface element with various boundary meshes.  The transition
interface element uses two levels of approximation.  The goal of the interface is that it
should not decrease the accuracy below that obtained using the less refined boundary
with a conforming mesh.  However, it will not increase the accuracy above that obtained
using the more refined boundary with a conforming mesh.  The goal of the transition is
that it should not decrease the accuracy below the Reissner-Mindlin assumptions.
However, it will not increase the accuracy above that using a solid mesh.  Therefore these
restrictions must be considered when looking at results.

4.1 Patch Test
The first example problem is a patch test, originally proposed in [11] and modified in [8]
for the transition interface.  The problem was further modified here, subdividing the
center solid element into four elements, to make the interface non-conforming, as shown
in Figure 6.

Figure 6: Patch Test.

The goal of the patch test is to show that the elements, in this case particularly the
transition interface, can reproduce various stress states exactly with distorted elements.
For this problem, a linearly varying displacement is prescribed around the entire
boundary:

( ) ( )
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xyyxv

yxyxu

+⋅=
+⋅=

−

−

which leads to the uniform state of stress:
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The displacement contours and the von Mises stress contours are shown in Figure 7.
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Figure 7: Displacement and Stress Contours for Patch Test (p=3).

The displacement contours show exactly the applied displacement field, with no breaks
for the interface elements.  The von Mises stress contours are constant with a value of
1503, which is also the exact value.  Each of the individual stress components is exact as
well, as shown in Table 1. While this is not a sufficient test, it is a necessary one.

Table 1: Stress Components for Patch Test (p=3).

Stress component Minimum Maximum
σx 1333. 1333.
σy 1333. 1333.
τxy 400.0 400.0
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4.2 Cantilever Plate
The second example problem is a cantilever plate that has exact solutions at low p-levels.
The boundaries for each of the meshes are shown in Figure 8, with the solid p-element
faces on the left and the shell p-elements on the right of each diagram.  Some of the
meshes serve as baselines for the transition interface and use an interface element, even
though they are conforming.

solid shell solid shellsolid shell solid shell

Figure 8: Boundaries on Cantilever Plates.

Tension (exact at p=1), moment (exact at p=2), in-plane shear (exact at p=3), out-of-
plane shear (exact at p=3), and torsion (no exact answer) load cases were analyzed.  The
displacement contours at p=3 for the in-plane shear and torsion load cases with the one
hexa/one quad mesh are shown on the deformed shape in Figure 9.  The maximum
displacement values are also printed at the appropriate locations.  Since this mesh is
conforming, it serves as a benchmark and provides a verification of the transition
interface.
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Figure 9: Displacement Contours on Cantilever Plate (p=3).
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The displacement contours at p=3 for the in-plane shear and torsion load cases with the
three hexa/two quad mesh are shown on the deformed shape in Figure 10.  This mesh is
not conforming, and may be compared with the benchmark solution for accuracy.
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Figure 10: Displacement Contours on Cantilever Plate (p=3).

The maximum values of the displacement at p=3 for each of the five load cases are listed
in Table 2 for all meshes.  All of the meshes are exact for the theoretical load cases and
differ for the torsion load case.  The answers for the torsion load case differ because of
the relatively low p=3; at higher p-levels the answers should converge.  Note that they
may converge to a solution limited by the Reissner-Mindlin assumptions, not the exact
solution, because of the errors of idealization.

Table 2: Maximum Displacement for Cantilever Plate (p=3).

Mesh Tension

×10-5

Moment

×10-4

In-
shear
×10-5

Out-
shear
×10-4

Torsion

×10-4

one hexa/one quad 2.000 2.400 3.600 3.640 1.568
one hexa/two quads 2.000 2.400 3.600 3.640 1.550
two hexas/one quad 2.000 2.400 3.600 3.640 1.567
two hexas/two quads 2.000 2.400 3.600 3.640 1.552
one hexa/three quads 2.000 2.400 3.600 3.640 1.547
three hexas/one quad 2.000 2.400 3.600 3.640 1.569
two hexas/three quads 2.000 2.400 3.600 3.640 1.550
three hexas/two quads 2.000 2.400 3.600 3.640 1.553

three hexas/three quads 2.000 2.400 3.600 3.640 1.552
one hexas/two trias 2.000 2.400 3.600 3.640 1.554
two hexas/two trias 2.000 2.400 3.600 3.640 1.556
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4.3 Square Plate with Circular Hole
The third example problem is a square plate with a circular hole, as shown in Figure 11.
The hole is small enough relative to the plate that additional elements, though not
necessary, greatly improve convergence.  In addition, because of the Poisson’s effect,
there will be some variation through the thickness.  This example better illustrates how a
global/local problem could be modeled, since the patch of shell elements around the hole
is being replaced with solid elements, without modifying the mesh away from the hole.

Figure 11: Square Plate with Circular Hole.

The square plate has a uniaxial tension load and symmetry constraints, so that the stress
concentration factor at the hole may be calculated.  Two transition interface elements
were used, since the interface contains a right angle.  The displacement contours and the
von Mises stress contours for the four hexa/two quad mesh are shown on the deformed
shapes in Figure 12.
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Figure 12: Displacement and Stress Contours on Plate with Hole (p=8).
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The stress concentration factors at a sequence of p-levels are listed in Table 3 for four
meshes with interface elements. The value calculated from [12] for a semi-infinite plate is
2.72, which is derived from curve fits to photoelastic data for a specified accuracy of
“much less than 5%.”

Table 3: Stress Concentration Factor for Plate with Hole.

Mesh p=3 p=6 p=8
two hexas/two hexas 2.955 2.760 2.787

two hexas/three hexas 2.748 2.786 2.794
two hexas/four hexas 2.761 2.784 2.792
four hexas/four hexas 2.735 2.783 2.792

The p=3 results are somewhat scattered, but the p=6 and p=8 results show that the two
non-conforming meshes are much closer to the final conforming mesh than to the initial
conforming mesh.  This convergence of the stress concentration factors can be seen in
Figure 13.
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Figure 13: Convergence of Stress Concentration Factors.

This shows the advantage of the interface elements: adding additional solid elements in
the primary area of interest using interface elements gives nearly the same answer as
adding additional shell elements to make the mesh fully conforming.
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5 Conclusions
Interface elements for dissimilar meshes are being implemented in MSC/NASTRAN.  In
the previous Part 1 [1] and Part 2 [2], curve interface elements were presented for shell
and beam p-element edges along a geometric curve, and surface interface elements were
presented for solid and shell p-element faces over a geometric surface, respectively.  In
the current Part 3, shell-to-solid transition interface elements are being presented for shell
p-element faces and solid p-element edges.  These elements are applicable to a wide
range of problems, such as global/local analysis and component assembly.  The transition
interface elements use the hybrid variational formulation for the interface, developed by
NASA Langley Research Center, and a Reissner-Mindlin formulation for the transition.
This combination approach was summarized in this paper along with the implementation
in MSC/NASTRAN.

Three sets of example problems were demonstrated, ranging from simple models having
exact solutions to more complicated applications illustrating global/local analysis.  The
patch test and cantilever beam models showed that the transition interface elements
provide the exact results for theoretical problems, whether or not the meshes are
conforming.  The plate with hole model showed that the interface elements can be used
efficiently for global/local analysis, using more elements in the area of interest without
having to transition to the model boundaries.  The local area in that shell model was
removed and replaced with a more refined solid mesh, and the results were nearly the
same as having added shell elements to make the model fully conforming.

It is important to note that the interface elements provide a tool for connecting dissimilar
meshes, but they do not increase the accuracy of the mesh.  As with any interface
formulation, the hybrid variational formulation, which imposes continuity conditions in a
weak form, can not increase the accuracy of the adjacent boundaries.  The Reissner-
Mindlin formulation, which assumes plane sections remain plane, can not adequately
describe a more complicated behavior.  In addition, when a shell joins a solid, the
behavior in the immediate vicinity is often dominated by fillets or other physical details,
which are not modeled. These factors should be considered when deciding how close to
the areas of primary interest to put the interface elements.

6 Acknowledgement
This work was performed in conjunction with NASA Cooperative Agreement NCC1-
202, “Commercialization of NASA Interface Technology,” signed October 18, 1994, and
NASA Cooperative Agreement NCC1-274, “Commercialization of NASA Interface
Technology,” signed January 29, 1998.



17

7 References
1. J.E. Schiermeier, J.M. Housner, J.B. Ransom, M.A. Aminpour, and W.J. Stroud, “The

Application of Interface Elements to Dissimilar Meshes in Global/Local Analysis,”
presented at the MSC 1996 World Users’ Conference, Newport Beach, California,
June 3-7, 1996.

2. J.E. Schiermeier, J.M. Housner, J.B. Ransom, M.A. Aminpour, and W.J. Stroud,
“Interface Elements in Global/Local Analysis – Part 2: Surface Interface Elements,”
presented at the MSC 1997 Aerospace Users’ Conference, Newport Beach,
California, November 17-20, 1997.

3. M.A. Aminpour, J.B. Ransom, and S.L. McCleary, “Coupled Analysis of
Independently Modeled Finite Element Subdomains,” presented at the
AIAA/ASME/ASCE/AHS/ASC 33rd Structures, Structural Dynamics, and Materials
Conference, Dallas, Texas, April 13-15, 1992.

4. J.B. Ransom, S.L. McCleary, and M.A. Aminpour, “A New Interface Element for
Connecting Independently Modeled Substructures,” presented at the
AIAA/ASME/ASCE/AHS/ASC 34th Structures, Structural Dynamics, and Materials
Conference, La Jolla, California, April 19-21, 1993.

5. M.A. Aminpour, J.B. Ransom, and S.L. McCleary, “A Coupled Analysis Method for
Structures with Independently Modelled Finite Element Subdomains,” International
Journal for Numerical Methods in Engineering, Vol. 38, pp. 3695-3718 (1995).

6. J.M. Housner, M.A. Aminpour, C.G. Dávila, J.E. Schiermeier, W.J. Stroud, J.B.
Ransom, and R.E. Gillian, “An Interface Element for Global/Local and
Substructuring Analysis,” presented at the MSC 1995 World Users’ Conference, Los
Angeles, California, May 8-12, 1995.

7. M.A. Aminpour and T. Krishnamurthy, “A Two-Dimensional Interface Element for
Multi-Domain Analysis of Independently Modeled Three-Dimensional Finite
Element Meshes,” presented at the AIAA/ASME/ASCE/AHS/ASC 38th Structures,
Structural Dynamics and Materials Conference, Kissimmee, Florida, April 7-10
(1997).

8. C.G. Dávila, “Solid-to-Shell Transition Elements for the Computation of Interlaminar
Stresses,” Computing Systems in Engineering, Vol. 5, No. 2, pp. 193-202 (1994).

9. “MSC and NASA Agreement to Include NASA Technology in MSC/NASTRAN,”
MSC/WORLD, Vol. V, No. 1, pp. 23-24 (February 1995).

10. MSC/NASTRAN Quick Reference Guide Version 70.5, The MacNeal-Schwendler
Corporation, Los Angeles, California (February 1998).

11. R.H. MacNeal and R.L. Harder, “A Proposed Standard Set of Problems to Test Finite
Element Accuracy,” Finite Elements in Analysis and Design, Vol. 1, pp. 3-20 (1985).

12. R.J. Roark and W.C. Young, Formulas for Stress and Strain, Fifth Edition, McGraw-
Hill, Inc., New York (1975).


