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Abstract

In this paper, a method for obtaining nonlinear sti�ness coe�cients in modal
coordinates for geometrically nonlinear �nite-element models is developed. The
method requires application of a �nite-element program with a geometrically non-
linear static capability. The MSC/NASTRAN code is employed for this purpose.

The equations of motion of a MDOF system are formulated in modal coordinates.
A set of linear eigenvectors is used to approximate the solution of the nonlinear
problem. The random vibration problem of the MDOF nonlinear system is then
considered. The solutions obtained by application of two di�erent versions of a
stochastic linearization technique are compared with linear and exact (analytical)
solutions in terms of root-mean-square (RMS) displacements and strains for a beam
structure.
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Introduction

Development of the high speed ight vehicle technology necessitate the further
theoretical development to understand the fatigue mechanisms and to estimate the
service life of aerospace structures subjected to intense acoustic and thermal loads.
E�orts to extend the performance and ight envelope of high speed aerospace ve-
hicles have resulted in structures which may behave in a geometrically nonlinear
fashion to the imposed loads.

Conventional (linear) prediction techniques can lead to grossly conservative de-
signs and provide little understanding of the nonlinear behavior. A large body
of work exists on the prediction of geometrically nonlinear dynamic response of
structures. All methods currently in use are typically limited by their range of
applicability or excessive computational expense.

Methods currently in use to predict geometrically nonlinear dynamic structural
response include perturbation, Fokker-Plank-Kolmogorov (F-P-K), Monte Carlo
simulation and stochastic linearization techniques. Perturbation techniques are lim-
ited to weak geometric nonlinearities. The F-P-K approach1;2 yields exact solutions,
but can only be applied to simple mechanical systems. Monte Carlo simulation
is the most general method, but computational expense limits its applicability to
rather simple structures. Finally, stochastic linearization methods (e.g. equivalent
linearization, see2�6) have seen the most broad application for prediction of geomet-
rically nonlinear dynamic response because of their ability to accurately capture the
response statistics over a wide range of response levels while maintaining a relatively
light computational burden.

The equations of motion of a MDOF, viscously damped geometrically nonlinear
system can be written in the form

M �X + C _X +KX + �(X) = F (1)

where M , C, K, X and F are the mass, damping, sti�ness matrices, displacement
response vector and the force excitation vector respectively. The vector function
�(X) generally includes 2nd and 3rd order terms in X. There exist mathematical
di�culties in the derivation of a general solution to equation (1) for the case of
random excitation. An approximate solution can be achieved by formation of an
equivalent linear system:

M �X + C _X + (K +Ke)X = F (2)

whereKe is the equivalent linear sti�ness matrix. Assuming the Gaussian zero-mean
loading and response, the convential stochastic linearization technique based on the
force-error minimization (see for example Roberts et al.3, Atalik et al.4) yields the
following expression for the equivalent sti�ness term (which replace the nonlinear
one):

Ke = E[
@�

@X
] (3)

where E[:::] is the operator of expectation of a random quantity.
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section describes a method of determining the nonlinear sti�ness coe�cients through
the use of the nonlinear static solution capability that exists in many commercial
�nite element codes.

For MDOF structures, it is expedient to seek a solution in modal coordinate
space

X = �q (6)

where � is generally a subset (L � N) of the linear eigenvectors (normal modes).
Such a representation allows the size of the problem to be signi�cantly reduced
without a noticeable loss of accuracy in many cases.

From (1), one can obtain the following set of di�erential equations in terms of
modal coordinates qi (i = 1; L):

�qi(t) +
LX

j=1

cij _qj(t) + kiqi(t) + i(q1; q2; :::; qL) = fi(t) (7)

where the nonlinear terms will be represented in the following form

i(q1; q2; :::; qL) =
LX

j;k=j

aijkqjqk +
LX

j;k=j;l=k

bijklqjqkql (8)

where the �rst index j takes values 1,2,...,L, the index k takes values from j (the
current �rst index value) and up (j + 1,j + 2 ... to L) and the third index l takes
values from k (the current second index value) and up (k + 1, k + 2 to L).

A procedure for determination of the coe�cients aijk and bijkl requires the appli-
cation of a �nite element program with a nonlinear static solution capability. In this
study, the MSC/PATRAN and MSC/NASTRAN programs8;9 are utilized.

The suggested technique is based on the restoration of nodal applied forces from
enforced nodal displacements prescribed to the whole structure in a static solution
(linear and nonlinear). Namely, by prescribing the physical nodal displacements
(vector Xc) to the structure, one can restore the nodal forces FT and the corre-
sponding nonlinear contribution Fc:

Fc = �(Xc) = FT �KXc (9)

The displacementsXc can be prescribed by creating a displacement constraint set for
the model in MSC/PATRAN, then the nodal applied forces FT will arise as single-
point-constraint forces in a MSC/NASTRAN nonlinear static solution. In general,
any set of displacements can be prescribed, e.g. for the bending problem of thin
plate/beam-like structures, one can prescribe both out-of-plane and in-plane (mem-
brane) components of displacement. The present analysis, however, is restricted to
problems where in-plane displacements will be assumed small (thus neglected) and
only the out-of-plane nonlinear sti�ness coe�cients are determined.

To illustrate the technique, one can begin with the prescription of displacements
for the whole structure in the following form

Xc = �1q1 (10)
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The nodal force vectors FT (nonlinear static solution) and KXc (linear static solu-
tion) are provided by MSC/NASTRAN. The nonlinear term Fc can then be evalu-
ated by equation (9). The vector of modal forces ~Fc = �TFc is calculated and it is
represented as

~Fc = �TFc = �T�(Xc) = �T�(�1q1) = [ai11]q1q1 + [bi111]q1q1q1 (11)

where the sought sti�ness coe�cients [ai11], [b
i
111] are column-vectors L�1 (i = 1; L).

Note that all other nonlinear terms in (11) do not appear since qj = 0 for j 6= 1.
Prescribing a displacement �eld with opposite sign Xc = ��1q1 results in a

modal force vector (denoted by ~F�c):

~F�c = �TF�c = �T�(Xc) = �T�(��1q1) = [ai11]q1q1 � [bi111]q1q1q1 (12)

where the quadratic (even) term will be the same as in (11) and the cubic (odd)
term takes on a sign change.

Note that in the system of equations (11) and (12), the value of q1 is given. The
coe�cients [ai11] , [b

i
111] (i = 1; L) can be determined from this system of 2�L linear

equations. In an analogous manner, i.e. prescribing Xc = �jqj, all other coe�cients
[aijj] , [b

i
jjj] can be determined.

A similar technique can be employed to determine coe�cients with two or three
inequal lower indices, e.g., [ai12],[b

i
112], [b

i
122] or [b

i
123]. Note that coe�cients of the

latter type appear only if the number of retained eigenvectors L in (6) is greater than
or equal to 3. Determination of coe�cients [ai12],[b

i
112] and [bi122] will be considered

as an example. Prescribe the displacement �eld to the model in the following form

Xc = �1q1 + �2q2

then the calculated (using MSC/NASTRAN) corresponding modal force vector ~Fc

is represented as follows

~Fc = �TFc = �T�(�1q1 + �2q2) = [ai11]q1q1 + [bi111]q1q1q1 + [ai22]q2q2 + [bi222]q2q2q2+

[ai12]q1q2 + [bi112]q1q1q2 + [bi122]q2q2q1 (13)

Prescribing the opposite sign displacement �eld

Xc = ��1q1 � �2q2

one obtains a second set of equations

~F�c = �TF�c = �T�(��1q1 � �2q2) = [ai11]q1q1 � [bi111]q1q1q1 + [ai22]q2q2�

[bi222]q2q2q2 + [ai12]q1q2 � [bi112]q1q1q2 � [bi122]q2q2q1 (14)

Summing (13) and (14), one obtains

~Fc + ~F�c = 2[ai11]q1q1 + 2[ai22]q2q2 + 2[ai12]q1q2
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From this equation, the coe�cients [ai12] are determined (note that the coe�cients
[ai11], [a

i
22] were already determined above).

Now we have two sets of L equations (13) and (14), but to determine cubic coe�-
cients [bi112] and [bi122] from them is not possible since the system matrix has linearly
dependent rows. Therefore, an additional type of displacement �eld is required. One
can prescribe the following type

Xa = �1q1 � �2q2

Then the modal force vector is equal to

~Fa = �TFa = �T�(�1q1 � �2q2) = [ai11]q1q1 + [bi111]q1q1q1 + [ai22]q2q2 � [bi222]q2q2q2�

[ai12]q1q2 � [bi112]q1q1q2 + [bi122]q2q2q1 (15)

From the system of 2 � L linear equations (13) and (15), the coe�cients [bi112] and
[bi122] can be determined. In a similar manner, all coe�cients of the type [bijjk] and
[bikkj] can be determined.

Now one can proceed with determination of coe�cients with three di�erent lower
indices, like [wi

123]. Prescribe a displacement �eld to the model in the following form

Xb = �1q1 + �2q2 + �3q3

Calculated (by MSC/NASTRAN) the nonlinear nodal force vector Fb is

Fb = �(Xb) = �(�1q1 + �2q2 + �3q3)

and the corresponding modal force vector will be

~Fb = �TFb = �T�(�1q1 + �2q2 + �3q3) = [ai11]q1q1 + [bi111]q1q1q1 + [ai22]q2q2

+[bi222]q2q2q2 + [ai33]q3q3 + [bi333]q3q3q3 + [ai12]q1q2 + [bi112]q1q1q2 + [bi221]q2q2q1+

[ai13]q1q3+[bi113]q1q1q3+[bi331]q3q3q1+[ai23]q2q3+[bi223]q2q2q3+[bi332]q3q3q2+[bi123]q1q2q3

Note that all coe�cients in this equation have been already determined, except
[bi123]. In analogous manner all coe�cients of type [bijkl] (j 6= k; j 6= l; k 6= l) can be
found.

Having the modal equations of motion (7) formulated, solution to these equations
can now be undertaken through a variety of techniques. For the case of random
loading, the application of the equivalent stochastic linearization was implemented
in this study. Within the framework of the force-based technique, the equivalent
sti�ness matrix (according to the formula (3)) will have the following form

Ke = E[
@(1; 2; :::; L)

@(q1; q2; :::; qL)
] (16)

Note that the derivatives and expectations in (16) can be easily evaluated due to
the analytical representation of the nonlinear terms in (8).
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Derivation of the potential energy function coe�cients

In order to apply the energy-based version of stochastic linearization, it is neces-
sary to have the expression of potential energy U of the system. Using expressions
(8), one can proceed with the determination of the potential energy in terms of modal
coordinates. It is known that nonlinear elastic force terms satisfy the following

i(q1; q2; :::; qL) =
@U

@qi
i = 1; L (17)

where U is the potential energy generated by nonlinear terms only. Since all nonlin-
ear coe�cients in i(q1; q2; :::; qL) have been determined, the potential energy func-
tion U(q1; q2; :::; qL) can be derived and it can be used in the energy-based stochastic
linearization technique.

Represent the potential energy (nonlinear term contribution) of the system in
the following form

U =
LX

s;j;k;l

dsjklqsqjqkql (18)

where the �rst index s takes values 1,2,...,L, the index j takes values from s (the
current �rst index value) and up (s+1,s+2 ... to L), the third index k takes values
from j (the current second index value) and up (j + 1, j + 2 to L), and the forth
index l takes values from k (the current third index value) and up (k + 1, k + 2 to
L). The task now is to �nd coe�cients dsjkl. Substituting (18) in (17) one obtains

i(q1; q2; :::; qL) =
LX

j;k;l

bijklqjqkql =
@

@qi
(

LX
s;j;k;l

dsjklqsqjqkql) (19)

Note that the quadratic terms in functions i(q1; q2; :::; qL) were omitted, otherwise
it would be necessary to introduce cubic terms in the expression (18). The quadratic
terms in i(q1; q2; :::; qL) arise in problems where membrane (in-plane) displacements
of bending plate, beam-like structures occur. In this study the analysis is restricted
to the exural vibration problem with no in-plane components of the displacement.

From (19) the sought coe�cients dsjkl can be found as follows

dsjkl =

8>>><
>>>:

bsjkl=2 if s = j
bsjkl=3 if s = j = k
bsjkl=4 if s = j = k = l
bsjkl otherwise

which can be easily veri�ed by substitution of U(q1; :::; qL) in the expressions (17).
Now when the expression for U in terms of modal coordinates has been de-

rived one can proceed with application of energy-based version of linearization (see
de�nition of the equivalent sti�ness matrix in (4) for this case).

7



RMS Strain Calculation

When the solution of nonlinear equations of motion (7) is accomplished and the
covariance matrix of displacements in physical coordinates is recovered, one can
proceed with the determination of the variance/rms of strain components. Consider
such a procedure of the strain determination for a exural vibration problem of a
beam in plane X � Z (Fig. 1). The Green strain component �x at the point with
the coordinates (x; z) is

�x(x; z) = �z
@2w(x)

@x2
+
1

2
(
@w(x)

@x
)2 (20)

where w is the exural displacement and the in-plane (membrane) component of
displacement is not taken into account, since it was assumed that (for certain prob-
lems) it is small and can be neglected. Note that only the out-of-plane nonlinear
sti�ness coe�cients were introduced in this study.

It is necessary to use the shape functions to represent the displacement and
strain at any location of the beam. Considering two coordinates for each node
w and � (rotation about Y -axis), one can introduce four shape functions for each
beam element, namely, f1(x); f2(x) associated with the 1st element node coordinates
w1, �1 and f3(x); f4(x) associated with the 2nd element node coordinates w2, �2.
These shape functions f1(x); f2(x),f3(x); f4(x) can be found, for example, in Weaver
et al.10. Note that they are not necessary coincide with the NASTRAN's shape
functions of the beam type element, but since the NASTRAN's shape functions are
not available, these functions were employed.

Therefore assuming that for points within each element the exural displacement
is

w = w1f1(x) + �1f2(x) + w2f3(x) + �2f4(x)

from (20) one obtains

�x(x; z) = �z(f
00

1 (x)w1 + f
00

2 (x)�1 + f
00

3 (x)w2 + f
00

4 (x)�2) +
1

2
(f

0

1(x)w1 + f
0

2(x)�1+

f
0

3(x)w2 + f
0

4(x)�2)
2

and the expectation of �2x will be

E[�2x] = z2(f
00

1 f
00

1E[w
2
1]+2f

00

1 f
00

2E[w1�1]+2f
00

1 f
00

3E[w1w2]+2f
00

1 f
00

4E[w1�2]+f
00

2 f
00

2E[�
2
1]+

2f
00

2 f
00

3E[�1w2] + 2f
00

2 f
00

4E[�1�2] + f
00

3 f
00

3E[w
2
2] + 2f

00

3 f
00

4E[w2�2] + f
00

4 f
00

4E[�
2
2])+

1

4
E[(f

0

1(x)w1 + f
0

2(x)�1 + f
0

3(x)w2 + f
0

4(x)�2)
4]

where the 3rd moments were omitted, since the Gaussian, zero-mean response is
assumed. The terms with the co-factor 1

4
produce moments of the 4th order which

in turn, by (5), are expressed in terms of the 2nd order moments. Thus using
the covariance matrix of displacements and shape functions of elements, one can
calculate the variance of strain components (in this example E[�2x]) at any location

of the structure and the root-mean-square (RMS) strain
q
E[�2x] can be calculated

as well.
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Young's Poisson's density
modulus ratio
0.73e+11 0.325 0.2763e+04
length width thickness
0.4572 0.0254 0.002261

Table 1: Parameters of the beam model

Numerical Results for a MDOF beam structure

The method which employs the technique described above, i.e. the determination
of the nonlinear sti�ness coe�cients plus the two versions of stochastic linearization
was implemented in a new in-house code.

The numerical results presented in this section correspond to a clamped-clamped
beam model in Figure 1. The �nite-element model had 19 nodes and 18 beam
elements. The parameters of the model in Fig. 1 are shown in Table 1 (system of
units is SI, [m], [N=m2], [kg] etc.), where the width and thickness are dimensions
of the cross-section of the beam. The �rst two natural frequencies (associated with
exural symmetric modes in the excitation plane) are 57.4 Hz and 310.1 Hz. These
two mass-normalized modes were chosen to approximate the motion according to
formula (6).

The nonlinear sti�ness coe�cients determined with application of the procedure
described above are summarized in Table 2. The quadratic terms were negligible,
so only the 3rd order terms are shown. Since the modal coordinates q1; q2 are
nondimensional, the units of these nonlinear coe�cients are in [N �m].

Note that from (17), it would follow that

@j
@qk

=
@k
@qj

=
@2U

@qkqj

Comparing the terms with like powers in qj and qk leads to a certain relation between
the nonlinear coe�cients, for example, for the cubic coe�cients b1122 and b2112 it is

b1122 = b2112

and for other types, it is

3b1222 = b2122 3b2111 = b1112

It turned out that the computed nonlinear sti�ness coe�cients (see Table 2) are in
an excellent agreement with these relations.

The RMS exural displacements and RMS strain component �x of the points
located on the surface layer of the beam and along the coordinate x were obtained
by using the force-based and energy-based versions of stochastic linearization and
results are compared with the linear solution and with exact (FPK) solution for
some cases below.
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b1111 b1222 b1112 b1122
0.899e+12 0.977e+13 0.191e+13 0.139e+14

b2111 b2222 b2112 b2122
0.638e+12 0.608e+14 0.139e+14 0.293e+14

Table 2: Nonlinear sti�ness coe�cients for the beam model

The system sti�ness and damping matrices of the beam model in modal mass-
normalized coordinates were as follows

K =

"
1:30098E + 05 0

0 3:79653E + 06

#
C =

"
4:039 0
0 4:039

#

At �rst, the following type of the spectral density matrix of the external forces (in
modal coordinates) was assumed:

Sf (!) =

"
a 0
0 a

#

which constituted a white noise excitation with the frequency band taken from 0 to
550 Hz. For this type of excitation the FPK solution was possible to obtain, see,
for example Bolotin1. The RMS exural displacements as function of coordinate x
are shown in Fig. 2, where due to the symmetry only a half of the beam is shown.
One can see that the force-based version slightly underpredicts the values of RMS
displacements and that the linear analysis overpredicts it by about 50 % (at the
middle node 10). RMS displacements at the middle node for the nonlinear analyses
achieve about 60 % of the beam's thickness.

The RMS strains shown in Figures 3 and 4 indicate that FPK solution is between
the force-based and energy-based solutions for all points along the beam and for both
cases of loading. For the linear analysis (with the term �(X)=0 in (1)) the linear
strain recovery was applied, i.e. the 2nd term in (20) was omitted.

As a 2nd type of excitation, a uniform (in space) white noise type pressure was
applied to the beam. The frequency band was the same 0{550 Hz. This type of
excitation corresponded to the following spectral density matrix of forces in modal
coordinates:

Sf(!) =

"
0:0536 �0:0236
�0:0236 0:01052

#

where the units are in [ (N�m)�(N�m)
rad=s

]. The FPK solution was not available for this type
of loading. The RMS strains for this case are shown in Fig. 5. One can see a larger
di�erence between the two versions of linearization. The linear analysis predicts
larger values of maximum strains than the nonlinear analyses and underpredicts
strains for some portion of the beam. The di�erence in maximum RMS strain (at
the clamping) between the linear and nonlinear analyses achieves about 50 %.

One can see that in all cases the energy-based version of linearization yields
greater values of strain (achieving 15 % di�erence in some cases) than the values

10



from the force-based version, i.e. it produces more conservative estimate for RMS
strains.

Conclusions

A new method for determination of nonlinear sti�ness coe�cients has been sug-
gested which utilizes a �nite-element commercial software with geometrically non-
linear static capability. It has been shown that application of MSC/NASTRAN and
MSC/PATRAN for this purpose is su�cient.

This method has been incorporated into a program which calculates a steady-
state response of a MDOF structure to a Gaussian zero-mean random excitation.
E�orts are presently underway to implement this method into MSC/NASTRAN
through a DMAP Alter.

Two versions of the stochastic linearization have been compared on example
of beam structure and the results have shown that the energy-based version (in all
cases) provided a more conservative estimate of strains than the conventional (force-
based) version. This is a useful fact, since application of the energy-based version
would lead to more safe estimate of the fatigue life of the structure.
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Figure 4: RMS strain �x vs. longitudinal coordinate of the beam
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