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Abstract 
 
The automotive industry continues their increased investments in NVH analysis and as such, the number of 
MSC.Nastran users within major automotive companies has grown larger and demands more from 
computer system environments. These demands typically include rapid job turnaround and throughput 
capability in a multi-user HPC environment. What are more, many NVH analysis environments coexist 
with other structural software applications that compete for system resources such as CPU, memory, 
storage and I/O. 
 
A discussion is given on the parallel NVH analysis techniques with MSC.Nastran solution sequences. 
Parameters such as model size, element types, and frequency cut-off value can produce a wide range of 
compute behavior such that consideration should be given to how system resources are configured. The 
parallel performance characteristics of the SGI 2000 and SGI 3000 are examined for both turnaround and 
throughput NVH requirements that include industrial-size automotive examples. In addition Simple 
guidelines on proper system configuration and innovative use of available IRIX system resource 
management tools are provided that are designed to maximize NVH analysis productivity. 
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1. Introduction 
 
The use of NVH analysis provides essential benefits towards designing vehicles for ride comfort and 
quietness, an increasingly competitive advantage in today's global automotive market. Analysts continue to 
push NVH modeling to higher excitation frequencies in order to capture an increasingly larger audible 
range for additional NVH reductions. Subsequently this requires that NVH model parameters grow 
substantially larger and well beyond those in common modeling practice today. 
 
Common global practice for NVH analysis on trimmed body-in-white (BIW) typically restricts upper 
bound limits on excitation frequencies to between 250Hz and 300Hz. However many automotive 
companies have desires to increase this to 600Hz and beyond during the next few years. These predicted 
modeling levels for higher frequencies couldn’t be met with conventional NVH methods with regards to 
both numerical accuracy and practical job turn-around time. 
 
The automotive industry has historically invested in vector systems to satisfy the high-performance 
computing (HPC) resource demands of CAE applications, and in particular for NVH analysis using 
MSC.Nastran. NVH requires high demand of virtually all HPC resources -- CPU, storage, memory 
bandwidth, and I/O rates on the order of TBS for a single NVH job. Parallel capability of NVH was 
introduced only recently, and vector systems were important for NVH jobs that were restricted to 
uniprocessor execution. 
 
With release of MSC.Nastran v70.7 during 1999, the first substantial parallel capability for NVH analysis 
provided industry with a migration path from expensive vector systems to more economical RISC systems. 
A distributed memory parallel programming model is used for MSC.Nastran in order to leverage the 
advantage of contemporary scalable RISC architectures. This parallel capability was implemented for all 
NVH related solution sequences such as 103, 108, and 111. 
 
Automotive industry migration in HPC architectures is the result of new algorithms and methods recently 
implemented for several automotive HPC applications. The vector-to-RISC migration began for the 
automotive industry during 1995 when a direct sparse solver was introduced in MSC.Nastran, and quickly 
became the choice over the expensive skyline solver. The sparse solver reduced CPU and storage 
requirements by an order of magnitude over the skyline solver and as such, structural analysis (static’s) 
rapidly migrated from vector to RISC. 
 
Lately there has been growing concern over how the industry will address future NVH modeling 
requirements at higher frequencies. Today's typical model sizes for current NVH analysis of an trimmed 
body requires a vector class system for effective job turn-around -- usually defined as overnight.  With the 
current NVH techniques in place, even next generation vector systems will not deliver the performance 
required for conventional NVH modeling targets of the future. 
 
Model parameters will exceed the practical limits of these vector architectures. The conventional 
eigenvalue extraction (Lanczos) and modal response methods (MSC.Nastran SOL 103 and 111) are widely 
considered to be too costly for vector, such that alternative methods are being proposed on cost-effective 
RISC systems. This paper examines efficient implementation of Lanczos on both uniprocessor and parallel 
RISC architectures and, a highly parallel direct frequency response (MSC.Nastran SOL 108) method as a 
consideration to achieve future NVH modeling targets. 
 
 
2. MSC.Nastran for NVH Analysis 
 
Implicit FEA software MSC.Nastran from developer MSC.Software Corporation (www.mscsoftware.com), 
is a multi-purpose structural analysis tool with a range of linear and nonlinear capabilities. It is most 
popular with industrial applications that require evaluation of the dynamic response. Of structures, For 
example, the automotive industry uses MSC.Nastran for design applications such as vehicle weight 
reductions, improved durability, and reductions in NVH. 
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Beginning with MSC.Nastran 70.7, a distributed memory parallel capability was developed with MPI used 
as the message passing software. NVH applications were the primary motivation for parallel MSC.Nastran 
since they require a more than 10-fold increase in compute resources over other applications. Body NVH in 
particular can require a day of processing on a vector system such as the Cray T90. 
 
In general, two methods are used for frequency response evaluation in NVH applications; modal and direct. 
The modal method performs two steps; a Lanczos eigenvalue analysis that computes natural frequencies 
over an excitation range of interest, and later a frequency response based upon on the generalized modal 
coordinates from the Lanczos step. The direct method is a single step solution of the equations of motion 
for each frequency in the range of interest. 
 
The modal method is conventional practice for practically every automotive NVH application today, owing 
to lower cost vs. the direct method at low frequencies near the 200 Hz level. However, a shift is underway 
towards increased use of the direct method since high levels of parallel scalability are observed that can 
provide faster turn-around over modal. MSC.Software Corporation developed parallel capability for both 
modal and direct methods, but the direct has a naturally parallel algorithm that exhibits much higher 
scalability than the modal method. 
 
Parallel scalability for the modal method is model dependent since the parallel Lanczos scheme divides the 
frequency range equally among processors, then performs the eigenvalue search within each sub-range on 
each processor. For example, in a case where the cut-off frequency is 200 Hz for an 8 processor execution, 
processor 1 is assigned the frequency segment of 0 to 25 Hz, processor 2 from 26 to 50 Hz, and so on. Each 
processor then works independently to calculate the eigenvalues within their assigned segment. 
 
This parallel Lanczos scheme can experience load-balance inefficiencies since it is rare for a structural to 
have an equal number of natural frequencies within each uniform frequency segment. The result is that 
some processors perform more work than others for a given segment. The direct method, however offers 
good load-balance since parallelization is implemented for each independent frequency step, which each 
perform roughly the same amount of work. 
 
Parallel efficiency for NVH is a key consideration when using MSC.Nastran v70.7 and later releases, but it 
is important only after techniques for uniprocessor efficiency are implemented. The SGI ccNUMA 
architecture offers many features that can enhance MSC.Nastran performance for both uniprocessor and 
parallel execution. An examination of the various solution paths of MSC.Nastran help to explain the 
demands required of a particular hardware architecture feature. 
 
Generally speaking, finite element software exhibits a range of compute behavior depending upon the kind 
of analysis being conducted and model size, such that balanced hardware architecture is desired. For NVH 
modeling, parameters such as the size of the model, the type of geometry, the types of elements, and the 
excitation frequency of interest, all affect the MSC.Nastran execution behavior. A profile is provided in 
Table 1. That describes the behavior for certain MSC.Nastran tasks associated with NVH analysis. 
 
 

Table 1.     Computational Profiles for MSC.Nastran and NVH Analysis 
 

Computational Task      Memory Cycles             CPU Cycles 
 

Sparse Direct Solver       7 %          93 % 
 

Lanczos Solver          60 %                          40 % 
 

Iterative Solver          83 %                          17 % 
 

I/O Activity   100 %                             0 % 
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This profile highlights the importance of a balanced system and consideration for uniprocessor efficiency, 
since the sparse direct solver requires a fast processor for effective execution while the Lanczos solver 
requires high memory bandwidth speeds. The requirement for bandwidth is even greater when considering 
jobs that require I/O or use of the iterative solver. The I/O requirement in particular is very critical to 
efficiency in elapsed time for NVH since Lanczos is highly dependent upon large amounts of I/O for 
models with high modal density such as those typical of body NVH modeling. 
 
 
3. SGI ccNUMA Architecture  
 
The MSC.Nastran computations presented in this paper were performed on the SGI 2000 (formerly 
Origin2000) and SGI 3000 family of servers. These are cache-coherent non-uniform memory access 
multiprocessor (ccNUMA) architectures [1]. This ccNUMA architecture is a breakthrough implementation 
of shared memory architectures. For the SGI ccNUMA design, memory is physically distributed among the 
nodes but it is globally addressable to all processors through an interconnection network. 
 
The motivation and direction towards ccNUMA evolved at SGI as traditional shared bus architectures like 
that of the CHALLENGE server began to exhibit high latency bottlenecks as processor counts were 
growing within a single system image. During this same time, non-coherent distributed memory 
architectures started to emerge, but the programming of applications for message passing in such an 
environment was considered too difficult for commercial success. 
 
The SGI ccNUMA implementation distributes memory to individual processors through a non-blocking 
interconnect design, in order to reduce latencies that inhibit high bandwidth and scalability. At the same 
time, a unique directory based cache-coherence provides a memory resource that is globally addressable by 
the user, in order to simplify programming tasks. A single image SGI 2800 system offers up to 512 
processors and can expand to 1 Tbyte of memory, which is the largest SMP system currently available in 
industry. 
 
The distribution of memory among processors ensures that memory latency is reduced. The globally 
addressable memory model is retained but memory access times are no longer uniform. The ccNUMA 
design incorporates hardware and software features that minimize latency differences between remote and 
local memory. Page migration hardware moves data closer into memory locations that are closer to a 
processor with frequently access to that data, meaning that most memory references are local. 
 
Cache coherence is maintained via a directory-based protocol while caches are used to reduce memory 
latency as well. While data only exists in either local or remote memory, a copy of the data can exist in 
various processor caches. Keeping these copies consistent is the responsibility of the logic (cache-coherent 
protocol) of the various hubs. The directory-based cache coherence protocol is preferable to snooping since 
it reduces the amount of coherence traffic; cache-line invalidations are broadcasted only to those processors 
actually using the cache line instead to all processors in the system. 
 
The building block of the system is the node, which contains two processors for the SGI 2000 and four 
processors for the SGI 3000, and up to 4 GB of main memory. The node also contains its corresponding 
directory memory, and a connection to a portion of IO subsystem. The hub interface to the node is the 
distributed memory controller and is responsible for providing transparent access to all of the distributed 
memory (in a cache-coherent manner) to all of the processors and I/O devices. The nodes can be connected 
together via any choice of scalable interconnection network. 
 
System architecture's ability to achieve high parallel efficiency becomes increasingly important as 
algorithms for CAE software applications are developed towards such capability. From a hardware and 
software algorithm perspective, there are roughly three types of CAE simulation "behavior" to consider: 
implicit and explicit finite element analysis (FEA) for structural mechanics, and CFD for fluid mechanics. 
Each has their inherent complexities with regards to efficient parallel scaling, depending upon the parallel 
scheme of choice. 
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Most commercial CAE software employs a distributed-memory parallel (DMP) implementation for 
compatibility across the full range of RISC architectures available. Other choices for efficient parallel 
methods are shared-memory parallel (SMP) coarse grain, and hybrid parallel schemes that combine DMP 
and SMP within a single simulation. MSC.Nastran uses a DMP implementation with MPI but also contains 
SMP for certain tasks such as element generation and assembly. This strategy is well suited to distribute 
shared-memory architecture like the SGI ccNUMA. 
 
 
4. Parallel Performance Issues 
 
Parallel efficiency of any CAE software application has certain algorithm considerations that must be 
addressed. The fundamental issues behind parallel algorithm design are well understood and described in 
various research publications. For grid-based problems such as the numerical solution of partial differential 
equations, there are four main sources of overhead that can degrade parallel performance: 
 
   * Non-optimal Algorithm Overhead 
     The best sequential algorithm may often be difficult or impossible to 
     parallels, for example triangular solvers. In such cases the parallel 
     algorithm may have a larger operation count than a sequential one. 
     Additionally, in order to avoid communication overhead one may wish to 
     duplicate some computations on different processors. 
 
   * System Software Overhead 
     Implementation of a parallel algorithm often results in an increase of 
     the (relative) software overhead such as those associated with 
     indexing, procedure calls, and other operations that are not 
     floating-point computations. 
 
   * Computational Load Imbalance 
     The execution time of a parallel algorithm is determined by the 
     execution of the processor performing the largest amount of work. 
     Should the computational workload not be evenly distributed, load 
     imbalance will result and processor idling will occur, meaning certain 
     processors must wait for other processors to finish their computation. 
 
   * Communication Overhead 
     All time spent in communication and synchronization through both 
     hardware and software means is pure overhead. An example is the 
     communication latency associated with the explicit passing of messages  
     in a DMP scheme. 
 
The parallel version of MSC.Nastran was carefully designed to minimize major sources of parallel 
inefficiencies. For certain solution sequences such as 108, communication overhead is minimized and 
proper load balance is achieved. Also, implementation of an SGI ccNUMA-aware MPI helps to minimize 
communication overhead since latency is reduced by about 3-fold over MPICH. Still with such a 
sophisticated approach, parallel performance can exhibit unsatisfactory results on a ccNUMA system 
owing to the lack of special mapping to the specific architecture features of ccNUMA. 
 
Parallel performance of MSC.Nastran, as originally ported on the SGI ccNUMA architecture did not meet 
initial expectations, with most models scaling only to 2 or 4 processors. Examination of the parallel 
performance for a number of cases identified bottlenecks with MPI latency and non-enforcement of 
processor-memory affinity (data placement) as the key reasons for limited scalability. The data placement 
concern was related to a feature of the ccNUMA architecture and was addressed through implementation of 
the IRIX dplace set of tools. 
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Total MPI latency is determined by both the specifics of system architecture and the implementation of 
MPI for that system. Since system architecture latency is determined by design of a particular interconnect, 
overall latency improvements can only be made to the MPI implementation. Modifications to the MPI 
software to ensure “awareness” of a specific architecture are the only way to reduce the total latency and 
subsequently the communication overhead. 
 
 
5. MSC.Nastran Computational Efficiency 
 
The overall objective of the following performance studies is to demonstrate techniques for improved 
performance of MSC.Nastran software on the SGI ccNUMA architecture for a range of solution sequences 
related to NVH analysis. Performance is examined on moderately configured SGI 2000 and 3000 systems 
that are described in Table 2. 
 
 

Table 2.     System Environments for MSC.Nastran Performance Investigations  
 
System             Processor         Level2 Cache        System          IRIX Level MPI Latency  
       Topology     (microsec) 
   
 SGI 2400     MIPS R12000/300Mhz        4 MB              1 x 32       6.5             11.8 
 
 SGI 2400     MIPS R12000/400Mhz        8 MB              1 x 16              6.5              11.8 
 
 SGI 3200     MIPS R12000/400Mhz        8 MB              1 x   8          6.5                6.2 
 
 
A review of techniques for improved uniprocessor efficiency is provided, prior to discussion about multi-
processor efficiency considerations. Note that these techniques are valid for both homogenous and 
heterogeneous CAE application environments, meaning there would be no impact on jobs from other 
applications executing simultaneously with MSC.Nastran from the following recommendations. 
 
 
5.1 Uniprocessor Efficiency 
 
Efficient NVH performance from a uniprocessor perspective demands high rates of memory bandwidth as 
noted for the Lanczos algorithm from Table 1. in addition to high rates of I/O bandwidth. A key feature of 
the SGI 2000 ccNUMA architecture is its memory bandwidth rate of 720 MB/sec shared by two processors 
on a single node. For the SGI 3000 it is 3200 MB/sec shared by four processors on a single node. Since an 
estimated 60% of all compute cycles for the Lanczos algorithm are associated with memory traffic, 
significantly faster processors will not produce significant increases in performance. 
 
Improvements in uniprocessor Lanczos performance for modal frequency response, and therefore SOL 103 
and 111 jobs, will come from increases in memory and I/O bandwidth. Also noted from Table 1. is that 
requirement for uniprocessor improvement in the sparse solver is all about processor speed rather than 
memory and I/O bandwidth. Since direct frequency response is dominated by sparse decomposition, the 
increase in bandwidth offered by the SGI 3000 over the SGI 2000 will not offer much of an increase in 
uniprocessor performance for SOL 108. 
 
To better illustrate NVH uniprocessor efficiency and execution behavior, a series of MSC.Nastran models 
from various solution sequences were selected that exhibit a range of system resource requirements. Each 
of these models represent industrial sized models that appropriately stress the resources of a complete 
system environment. The models are shown in Table 3. and provide details on the solution sequence and 
size of each, along with other NVH parameters where appropriate. 
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Table 3.     MSC.Nastran Models for Uniprocessor Performance Investigations 

 
Case        SOL        DOF          Modes       Frequencies     Design Loops  

 
    A         103         650K             814               n/a                       n/a 

 
    B         111        1067K             660              100                      n/a 

 
    C         108          525K             n/a                  4                       n/a 

 
       D         200         570K              n/a               n/a                        2 
 
 
Each of the models from Table 3 was executed on each of the systems described in Table 2. In each case 
steps were taken to ensure maximum uniprocessor efficiency. As stated in section 4. it is important to 
ensure a good mapping of the memory placement of data with the process associated with that data. This is 
accomplished with enforcement of memory-processor affinity through a set of SGI system tools called 
"dplace" for data placement tools. It should be noted that MSC.Nastran is instrumented for this feature on 
the SGI ccNUMA systems so that this requirement is transparent to the user. 
 
There are certain MSC.Nastran system parameters that can benefit NVH and other applications. For the 
SGI ccNUMA architecture it is recommended that the following parameters be considered, which can be 
set overall in the "nastrc" resource file: 
 
          SYSTEM (205) = 64, SYSTEM (198) = 8 
          SYSTEM (206) = 4 
          SYSTEM (273) = 2 
          SYSTEM (1)     = 65537 
 
The parameter setting for the sparse solver RANK size (205) and the Lanczos MINFRONT size (198) 
provides good performance for most MSC.Nastran modal NVH jobs for the MIPS R12000 processor. For 
sparse solver dominant jobs, one may wish to try various RANK size parameters (other than 64) for 
improved performance. A model with a large number of DOF and small numbers of modes is sparse solver 
dominant, which are characteristics typical of powertrain NVH. 
 
Also recommended for the sparse solver is EXTREME reordering which is selected with 206. Selection of 
the proper reordering scheme for a particular model can increase the reduction of floating point operations 
in the sparse decomposition. Other reordering methods that have shown improvement for the SGI 
architecture beyond the default reordering include METIS (206 = 8) or MMD (206 = 2). 
 
For modal NVH performance improvements, there is an SGI ccNUMA specific Lanczos shifting logic to 
maximize eigen-extraction performance for large numbers of modes, typically several hundred or more. 
This option is enforced with the 273 = 2 parameter. Other choices include the default (273 = 0) and the 
BCS shifting logic (273 = 1) which may be better methods when the number of modes is very small. The 
improvements from 273 are all highly model dependent. 
 
Also important for large numbers of modes is proper I/O configuration. The parameter 1 = 65537 provides 
the maximum BUFFSIZE allowed by the system, which is the first step. Most important is configuration 
for a large scratch file system and use of the SGI EAG_FFIO library through the parameter ff_io_opts. 
Reference to [5] has details on the use of this parameter, but the following example shows set up of an 
FFIO cache of 512 x 1 MB pages and 4 read "aheads" for the MSC.Nastran SCRATCH and SCR300 files: 
 
      ff_io_opts = '*.SCR*(eie.direct.diag.mbytes:256:512:4:1:1:64,event.summary.mbytes) 
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Performance results are provided in Table 4. for the uniprocessor cases described in Table 3. for each of the 
SGI systems described in Table 2. For case A which is dominated by the Lanczos algorithm owing to a 
large number of modes relative to DOF, very little improvement is observed with an increase in the MIPS 
clock speed (300 Mhz to 400 Mhz) yet very good improvement is observed between the SGI 2000 and SGI 
3000 architectures. 
 
The contributions of increased processor speed and L2 cache size are observed as expected with case C 
which is dominated by sparse decomposition, and case B which experiences a mix of dependence on 
Lanczos and sparse decomposition algorithms, given the large DOF and the relatively moderate number of 
modes. For case D which is a design optimization model, the iterative scheme behind SOL 200 benefits 
from the improved bandwidth of the SGI 3000 architecture. 
 
 

Table 4.     MSC.Nastran Uniprocessor Performance 
 

Case       SOL     SGI 2400-300    SGI 2400-400    SGI 3200       3200 /  2400-300 
 
               A          103            20,638 s             0,630 s             13,870 s              1.49 x 
 
                B          111             41,180 s           29,043 s            23,755 s              1.73 x 
 
               C          108               8,024 s             6,276 s              5,931 s              1.35 x 
 
               D          200             62,465 s           52,292 s            43,329 s             1.44 x 
 
 
The ratio given between the SGI 2400-300Mhz system and the SGI 3200-400Mhz system show a range of 
35% to 73% improvement depending on the model parameters. These uniprocessor improvements were 
obtained from a combination of efficient system parameter considerations, an increase in MIPS 12000 
processor speed, and improved bandwidth of the SGI ccNUMA system architecture. Considerations for 
MSC.Nastran parallel efficiency should be examined only after a good knowledge of uniprocessor 
efficiency is achieved. 
 
 
5.2 Parallel Efficiency 
 
A discussion on the distributed memory parallel implementations of modal and direct frequency response 
using MPI were provided in section 2. MSC.Nastran was originally developed as a shared memory parallel 
implementation but the MPI version gives much improved parallel scalability. One trade-off however, is 
that the MPI implementation also requires more system resources over the SMP. 
 
The uniprocessor issues were given and parallel efficiency is examined. Examples are provided that 
demonstrate the MPI parallel efficiency of the most important solution sequences for NVH -- SOL 103, 
111, and 108. For each model the data placement issues described in section 4. were resolved through 
automatic configuration in the MSC installation that is user transparent. 
 
The first example illustrates SOL 103 parallel performance for a vehicle body that is typical of the 
automotive industry today. The results in Table 5. show that reasonable scalability is achieved up to 4 
processors. Limitations on the parallel Lanczos algorithm were described in section 2. The value in the SGI 
3000 high bandwidth architecture is also illustrated since the SGI 2400-300 result of about 17 hours 
(16,595s) is reduced by 35% to about 11 hours on the SGI 3200 single processor, and is further reduced to 
just 3.5 hours using 8 processors. 
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Table 5.     MSC.Nastran SOL 103 Parallel Performance for xxcmd Model 

 
Model: Auto body, 1.3M DOF, 1088 modes, 800 MB memory, 2.4 TB total I/O 

Metric: Elapsed seconds with parallel speed-up 
 

CPUs            SGI 2400-300             SGI 2400-400               SGI 3200 
 
            1              61,595    1.0 *                   55,724    1.0 *                  40,523    1.0 *  

 
          2                          36,734    1.7                     33,453    1.7                    23,831    1.7 

 
            4                          24,501    2.5                     22,218    2.5                    15,582    2.6 

  
             8                         19,474     3.2                     17,497    3.2                    12,276    3.3 

 
        16                          14,660    4.2                              n/a                                   n/a 
 
          * All speed-up results are relative to the 1 CPU result 

 
 
The second example illustrates SOL 111 parallel performance for a vehicle body with a small number of 
modes but a large number of frequencies. As expected, parallel speed-up of the modal frequency response 
method, which includes a Lanczos eigenvalue extraction shows less parallel efficiency than SOL 103. 
Parallel speed-up is not very encouraging but the gains provided by the SGI 3000 high bandwidth 
architecture help to overcome some of the absolute performance issues. About a 42% decrease in turn 
around is observed between the SGI 2400-300 time of about 4 hours to about 2.5 hours on the SGI 3200 
single processor. 
 
 

Table 6.     MSC.Nastran SOL 111 Parallel Performance for xlemf Model 
 

Model: Auto body, 660K DOF, 39 modes, 449 freq, 400 MB memory, 474 GB total I/O 
Metric: Elapsed seconds with parallel speed-up 

 
CPUs            SGI 2400-300              SGI 2400-400              SGI 3200 

 
          1                     15,148    1.0 *                   10,820    1.0 *                  8,872    1.0 *  

 
          2                     12,619    1.2                       9,146    1.2                    7,397    1.2 

 
            4                        9,463    1.6                       6,851    1.6                  5,549    1.6 

 
                      8                           8,421    1.8                        5,864    1.8                       4,931    1.8 

 
 
                        *All speed-up results are relative to the 1 CPU result 
 
The third example examines parallel performance of SOL 108 for a vehicle body with 96 frequencies. A 
discussion of the parallel implementation of the direct frequency response algorithm was provided in 
section 2. Table 7. shows SOL 108 results that demonstrate high parallel efficiency for a large number of 
processors. Results on the SGI 2400 from 1 to 32 processors produced a 23-fold speed-up, which reduced 
the turn-around time from 31.7 hours to only 1.4 hours. On 16 processors the speed-up was 14-fold, 
demonstrating very good efficiency. 
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Table 7.     MSC.Nastran SOL 108 Parallel Performance for xlifr Model 
 

Model: Auto body, 536K DOF, 96 frequencies 
Metric: Elapsed seconds with parallel speed-up 

 
CPUs                  SGI 2400-300                        SGI 3200 

 
           1                         114,264     1.0 *                          84,640    1.0 * 
 
           4                                28,887     4.0                             21,168    4.0 
 
            8                                14,883     7.7                       10,855    7.8 
 
           16                                  8,070    14.7                                  n/a 
 
           32                                  5,047    22.6                                  n/a 
 
                              * All speed-up results are relative to the 1 CPU result 
 
These result provided in Table 7. are very encouraging, such that SOL 108 can be considered as an 
alternative to the less efficient Lanczos parallel method, and especially given that SOL 108 provides 
improved solution accuracy. Higher frequencies require that NVH model parameters grow substantially 
larger from current practice and a highly parallel SOL 108 is a potential method to achieve these goals. 
 
 
6. Future Directions 
 
Significant NVH analysis improvements have occurred recently such that further NVH reductions will only 
occur with design investigation at higher levels of fidelity and precision. An NVH capability that is highly 
scalable is critical to the automotive industry as NVH modeling expands to higher excitation frequencies 
that are necessary for modeling within a higher audible range. Further noise reductions for the occupant are 
possible with a better understanding of noise sources at these higher frequencies. 
 
Higher frequencies require that NVH model parameters grow substantially larger from current practice. 
NVH models today for trimmed BIW are typically limited to frequencies of 250 to 300 Hz, yet many 
automotive companies want an increase to 600 Hz. The conventional modal method requires vector 
systems for overnight turn-around, but even next generation vector designs will not deliver the performance 
required for future targets of NVH modeling. Also, accuracy concerns for the modal method at higher 
frequencies do not exist for the direct method. 
 
The automotive industry "standard" for NVH has been the modal method and vector systems for several 
years. It will be necessary to characterize the crossover point whereby the parallel direct method with RISC 
systems becomes less expensive computationally. A third example demonstrates this with a comparison of 
a vehicle BIW using the direct method on the same SGI 2800/64, and the conventional modal method on a 
single processor Cray T90. The model contains 525K DOF and extracts 2714 modes for a response analysis 
of 96 frequency steps. 
 
Results demonstrate roughly equal performance between the two techniques when 4 processors are used for 
the SGI 2800. At this level, the Cray T90 time is 8.8 hours compared with the SGI 2800, 4 processors at 8.9 
hours. The 4 processor time exhibits near-ideal speed-up at 3.8-fold over 1 processor at 33.5 hours. Results 
for the SGI 2800 at 8 processors further reduces the turn-around time to 4.8 hours for a 7-fold speed-up 
over that for 1 processor. 
 
In the wake of recent breakthroughs for scalable CAE simulation, research and industry will continue to 
increase their investments in CAE technology as a product and process design aid. The motivation is 
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simply a matter of economic benefits and improved quality that scalable CAE brings to the development 
process. Efficient turn-around of CAE simulations means increased modeling resolution and more 
comprehensive evaluation during early development stages. Parallel NVH analysis with MSC.Nastran is a 
technology that will contribute to that trend. 
 
Advancements will continue well into the new decade for improved CAE scalability as emerging algorithm 
developments and new hardware architectures lead a path towards enhanced CAE methodologies. These 
enhancements will encourage an increase in CFD modeling for transient flow conditions, widespread 
implementation of probabilistic structural mechanics, and production capability for multi-discipline fluid 
and structure coupling, among others. 
 
Future modeling requirements for trimmed body NVH are not practical with the conventional eigenvalue 
extraction and modal response method currently in practice. A highly parallel direct frequency response 
method is a viable alternative that offers practical job turn-around time, and with equivalent-or-better 
numerical accuracy. Use of the direct frequency response method also offers the automotive industry a 
migration path from vector to more cost-effective scalable RISC. The low cost of RISC computing will also 
enable rapid growth of design optimization. 
 
 
7. Conclusions 
 
Presented were guidelines for efficient implementation of MSC.Nastran for NVH applications on the SGI 
ccNUMA architecture. Modal frequency response with the Lanczos algorithm exhibits efficient 
performance when considerations are give to data placement and proper I/O configuration. The Lanczos 
algorithm in particular requires special attention to architecture awareness parameters. 
 
The highly scalable direct method frequency response offer an efficient alternative to Lanczos for high 
frequency applications. It was shown that modal density increases nonlinearly with increasing excitation 
frequency, meaning the direct method offers an encouraging alternative to conventional vector-based NVH 
modeling, based upon both performance, and cost-performance. An additional benefit is the improved 
solution accuracy of the direct over the modal method. 
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