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Abstract 
 
Dynamic road loads to automotive structures are random in nature and can be conveniently 
characterized as random processes in terms of the power spectral density (PSD) functions. 
Typical multiple dynamic loadings are modeled as a correlated PSD complex matrix. The 
random responses are simulated efficiently by employing MSC.Nastran frequency response 
module. The statistical characteristics of a random response are found through the moments of 
its PSD function. The total damage and durability life of a structure due to multiple road load 
events, corresponding to multiple road surfaces and events of a typical vehicle proving ground 
test, are then derived. A practical procedure for automotive CAE durability analysis using the 
random vibration approach is presented in this paper. Two example results of automotive 
structures, a rear axle assembly made of metals, and a headlamp assembly made of plastics, are 
given to demonstrate the approach and their applications. The results show that the random 
vibration approach costs less CPU time and memory. 
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Introduction 
 
Computer aided engineering (CAE) provides a means of verifying design for durability of 
automotive structures without making hardware prototypes. CAE durability can thus reduce 
time and cost for product development. There are, in general, two approaches for dynamic 
automotive CAE durability analysis, one is time domain approach and the other frequency 
domain approach. The time domain durability approach is an original durability approach for 
structure evaluation. The input loads to and response results from an automotive structure, are 
all expressed in terms of their respective time histories. While in the frequency domain 
approach, the loads and response results are expressed in terms of their respective power 
spectral density (PSD) functions. 
 
Dynamic road loads to automotive structures are random in nature and can therefore be 
conveniently defined as random processes in terms of the PSD functions [1,2]. Typical multiple 
dynamic loadings are modeled as a correlated PSD complex matrix. The random responses, 
such as stresses and accelerations of an automotive structure, are simulated efficiently by 
employing MSC.Nastran frequency response module. The statistical characteristics of a random 
response are found through the moments of its PSD function. The accumulated fatigue damage 
and durability life of a structure are then evaluated by using a simple closed form solution. 
 
The frequency domain approach provides an alternative for CAE durability evaluation, which 
can reveal the frequency characteristics of a structure and require less CPU simulation 
resources. The frequency domain PSD method has been used in space and automotive industry 
for many years, for structures under simple loading conditions [4,6,7]. In this paper a systematic 
PSD approach for automotive CAE durability analysis, dealing with multiple correlated input 
loads and multiple road load events, is presented. The total damage and durability life of a 
structure due to multiple random road load events, corresponding to multiple road surfaces and 
events of a typical vehicle proving ground test, are derived and implemented. 
 
A practical three-step procedure for automotive CAE durability analysis using the random 
vibration approach is illustrated, for system level structures under multiple road loading inputs. 
The procedure incorporates (1) the proving ground (PG) road load data process, (2) the finite 
element (FE) frequency response simulation, and  (3) the fatigue life evaluation. The 
fundamentals of the CAE frequency domain durability approach are briefly reviewed in the next 
three sections. Two example results of automotive structures, a rear axle assembly made of 
metals, and a headlamp assembly made of plastics, are given to demonstrate the approach and 
their applications.  
 
Random Load Description 
 
Road surfaces traversed by ground vehicles are random in nature. It has been established that 
most road surface irregularities are normally distributed and may be accurately described by a 
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stationary random process [1,2,6]. For a stationary ergodic random phenomenon, the ensemble 
averages are equal to the time averages. The statistical properties of a stationary ergodic 
process can then be computed from a single time history of sufficiently long period. The time 
average of a random variable x(t) is equal to the expected value of x(t), as defined as: 
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The mean square value of x(t) is found by applying average operation to variable x2(t) over a 
time interval T. 
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Correlation function is a measure of the similarity between two random quantities in a time 
domain τ. For a single record x(t), the autocorrelation R(τ) of x(t) is the expected value of the 
product x(t)x(t+τ): 
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When τ=0, the above definition reduces to the mean square value. 

( ) ( )[ ]R x E x t0 42 2= = ( )  
 
For two random quantities x(t) and y(t), the cross correlation function is defined by the 
equation: 
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A random process can be described in frequency domain in terms of power spectral density 
(PSD) functions. It can be shown that the power spectral density functions are related to the 
correlation functions by Fourier transform pairs. For a single random record x(t), the 
relationship can be shown in the following equations: 
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where ω=2πf.  From equations (3) and (6) it is clear that auto-correlation R(τ) is an even 
function of τ , and the auto PSD S(ω) is real. When τ=0, the mean square value is related to 
PSD S(ω) from (4) and (7) by 
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For two random quantities x(t) and y(t), the cross spectral density and cross correlation 
functions are defined by Fourier transforms: 
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The cross PSD Sxy(ω) is generally complex and has following properties: 
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where * denotes the complex conjugate. 
 
Frequency Domain Random Response 
 
The equation of motion of a linear structural system, in general, is expressed in matrix format in 
equation (12). The system of time domain differential equations can be solved directly in the 
physical coordinate system, corresponding to each load-time step.  
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where {x(t)} is a system displacement vector, [M], [C] and [K] are mass, damping and stiffness 
matrices, respectively, {p(t)} is an applied load vector with multiple inputs. 
 
When the multiple input loads are random in nature, a matrix of the loading power spectral 
density functions, [Sp(ω)], can be generated by employing Fourier transform of load vector 
{p(t)}.  
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Where m is the number of multiple input loads. The digonal term Sii(ω) is the auto-correlation 
function of load pi(t), and the off-digonal term Sij(ω) is the cross-correlation function between 
loads pi(t) and  pj(t).  From properties of the cross PSDs, it can be shown that the multiple 
input PSD matrix [Sp(ω)] is a Hermitian matrix.  The system of time domain differential equation 
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of motion of the structure in (12), is then reduced to a system of frequency domain algebra 
equations. 
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where n is the number of output response variables. The T denotes the transpose of a matrix. 
[H(ω)] is the transfer function matrix between the input loadings and output response variables. 
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The random response variables [Sx(ω)], such as displacement, acceleration and stress response, 
in terms of power spectral density functions, are obtained by solving the system of the linear 
algebra equations in (14). 
 
PSD Stress and Fatigue Analysis 
 
In frequency domain, fatigue damage of structures is estimated based on the statistical 
properties of the response stress PSD function. The stress PSD functions are usually the results 
from finite element frequency response analysis. The statistical characteristics of the response 
stress PSD can be obtained through the moments of  the PSD function. The nth spectral 
moment of the stress PSD function S(f), frequency f in unit of Hz, is defined by the following 
equation: 
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Properties of a continuous stationary Gaussian process can be related to the above nth 
moments, mn of the PSD function. The root mean square value, σ of PSD function is 
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The average rate of zero crossing with positive slop, E[0], which is also called as equivalent 
frequency in unit time, is expressed as: 
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The average rate of peaks, E[p] in unit time, is expressed as: 
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The irregularity factor, α of PSD function, is defined as: 
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The material fatigue properties are usually measured as S-N curve, which defines the 
relationship between the stress amplitude level, SA, versus the mean cycles to failure, N. For 
most high cycle fatigue problems (N ≥ 104), the S-N curve can be expressed as a simplified 
form: 
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where B and m are the material properties varying with loading and environment conditions, 
such as mean stress, surface finishing, and temperature. 
 
The accumulated damage, E[AD], due to fatigue random loading is evaluated based on the 
Palmgren-Miner’s rule, and expressed as: 
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where n(SA) is the number of cycles applied at stress amplitude level SA, p(SA) is the probability 
density function of the stress amplitude. Substituting equation (21) into (22), a general equation 
of fatigue damage from random stress response is obtained. 
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where T is time duration of random loading. Many methods for fatigue damage estimate have 
been developed, based on equation (23), by using different definitions of the probability density 
function p(SA).  The function p(SA) is usually defined as a function of statistical parameters of the 
response stress PSD, such as E[0], E[p], α and mns. The most popular damage estimating 
methods are Narrow Band method (Bendat 1964 [1]), Wirsching’s Method (1980) [9], and 
Dirlik method (1985) [11].  
 
Narrow Band method assumes the p(SA) is of the Rayleigh distribution which is represented by 
a narrowband process. That is, 
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Substituting (24) into (23) and integrating (23), the fatigue damage is then obtained as: 
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where Γ(.) is the Gamma function.  
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Wirsching’s methods [9] is a modification on Narrow Band method with a “correction factor” 
for the wide band process.  
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where the empirical rainflow correction factor, λ(α, m) is expressed as: 
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Dirlik method proposes another empirical closed form expression for the probability density 
function p(SA)D, based on extensive computer simulation, such as Monte Carlo technique. 
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The detailed contents of  the function p(SA)D can be found in the nCode/nSoft user manual [10] 
and [11].  
 
A typical proving ground for vehicle durability tests consists of multiple types of road surfaces 
(events), such as Cobble Stones, Silver Creek and so on, with different distances and driving 
speeds [12]. A complete set of road loads has several, n, road load curves, PSDi and 
corresponding driving times,  Ti. The total accumulated damage, E[AD]T , of an automotive 
structural component is thus a sum of the damages caused by each of the road events.  
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Where E[AD(PSDi, Ti)]I is the fatigue damage due to the ith road load event PSDi with 
duration Ti. The total number of repeats, NT, of the fatigue life for the complete set of the 
proving ground events is the inverse of the total damage E[AD]T. 
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The total equivalent life, TET, corresponding the complete set of road load events, can be 
therefore computed from the following equation. 

)31(][
1

T

n

i
i

ET ADE

T
T

∑
==  

 
CAE Durability Analysis Procedure 
 
A flow chart showing the procedure for Automotive CAE durability analysis, using random 
vibration approach, is presented in Fig. 1. The procedure consists of three major steps in the 
whole process: (1) the proving ground (PG) road load data process, (2) the FE model 
preparation and frequency response simulation, and  (3) the fatigue damage and life evaluation. 
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Fig. 1  A flow chart of CAE random vibration durability analysis 
 
 
Application Examples 
 
A Real Axle Assembly 
 
The FE model of a rear axle assembly is shown in Fig. 2. The FE model consists of 10,963 
elements and 12,666 nodes. The major components of the rear axle assembly include axle shaft 
made of forged steel; differential carrier of cast iron; pinion and ring gears of steel; diff case; rear 
cover; tube assemblies; track bar bracket; jounce, UCA and LCA, and shock brackets; and 
spring seats. The bolted joints and bearings are modeled as interface rigid elements with 
controlled degrees of freedom. The welded joints between the structural components are 
modeled in the same way as the parent materials.  
 
The road load inputs to the axle assembly are the measured forces form SP level vehicle in the 
proving ground tests. The dynamic road load data include events such as, Power Hop Hill 
(PHH), Silver Creek (SCR), and Hard Route (HR). The forces are measured from those 
components which interface with the axle assembly such as control arms. The spatial orientation 
of each load is derived based on the average orientation of the correspondent component. The 
load inputs to the axle FE model are multiple force excitations. Total nine spatial orientated 
dynamic forces are input into the FE model.  
 
As illustrated in the theory section, the input load matrix, [Sp(ω)], is generated by employing fast 
Fourier transform (FFT) of the load time histories. The diagonal term Sii(ω) is auto-PSD which 
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is a real function of frequency ω=2πf. While the off-diagonal term Sij(ω) is cross-PSD and a 
complex function of frequency ω=2πf. It is known that due to the property of cross-PSD, 
Sij(ω) = S*

ji(ω) = Sji(-ω), only half of the diagonal terms are needed to define the input PSD 
matrix. In MSC.Nastran, the cross-PSD forcing functions, expressed as real and imaginary 
parts, are input as two random load tables (TABRND1), respectively. Some typical correlated 
PSD load data, at two locations, are shown in Figs. 3 to 6. 
 

 
Fig.2 A FE model of rear axle assembly 

 
 
The critical components and their potential high stress areas (hot spots) are determined from the 
strain energy density (SED) information of the normal mode analysis. From load PSD profiles it 
can be seen that the road load excitation has high energy components in the low frequency 
ranges. For comparison purpose, the time domain simulation is also implemented. The duration 
of the transient input segment, for Power Hop Hill (PHH), is 150 seconds. The road loading has 
a total of 30,720 time steps. For the frequency domain PSD simulation, the frequency range is 
0.001 to 100 Hz, with unevenly spaced 150 frequency simulation points (more points clustered 
around natural frequencies). 
 
Axle Results and Comparisons 
 
The computer used for the simulation is a work station. For PHH loading simulation, the CPU 
time is 109 sec for modal frequency (SOL 111); and 458 sec for modal transient (SOL 112). 
The DBALL size is 4129 blocks for modal frequency (SOL 111); and 5934 blocks for modal 
transient (SOL 112). It is obvious that frequency domain method uses less CPU time and 
memory. 
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Two critical components in the axle assembly are identified: the right upper control arm (UCA) 
bracket (Element 53691); and the right lower control arm (LCA) bracket (Element 52853). 
The stress PSD profiles of the UCA bracket and LCA bracket, corresponding to the APG 
power hop hill (PHH) road load, are presented in Figs. 7 and 8, respectively. Some statistical 
properties of the PSD stress results are summarized in Table 1. 
 
The fatigue analysis results for component left UCA bracket are: 119.2 hours total fatigue life 
from frequency domain method and 126.5 hours from time domain method. The relative error in 
life is only  5.8% w.r.t.  the time domain method. The total fatigue life for the right LCA bracket 
is 383.1 hours from frequency method; 488.5 hours from time domain method. Which yields a 
relative error of 27.5% w.r.t. the time domain method. 
 
A Headlamp Assembly 
 
The headlamp assembly model is shown in Fig 9. The finite element model is built by employing 
8,562 elements and 8760 notes. The assembly is used for an accelerated key life test (KLT).  
The major components are made of plastics, include the housing, bezel, reflector, front and side 
lens, back cap and hooks,  and the supporting frame structure made of steel. 
 
The accelerated load inputs are the correlated base accelerations in X, Y and Z directions. The 
auto-PSD acceleration loading in Z direction is shown in Fig. 10. Frequency simulation rang is 
set from 1.0 to 6000 Hz, with unevenly spaced 118 points. The time simulation duration of the 
steady state input segment is 0.32 second. The loading has total 3202 time steps. 
 

Headlamp Results and Comparisons 
 
All dynamic stress simulations for two methods are performed on a Cray computer. The CPU 
time for modal frequency (SOL 111) is 722 sec; for modal transient (SOL 112) is 5,457 sec. 
The DBALL size is 5,588 blocks for modal frequency (SOL 111); and 12,560 blocks for 
modal transient (SOL 112). It again shows that frequency domain method uses much less CPU 
time and memory. 
 
Two critical components in the headlamp assembly are identified as the bezel made of pc, and 
the housing of pp. The stress PSD profiles of the bezel (Element 11961) and the housing 
(Element 16235) are shown in Figs. 11 and 12, respectively. The statistical properties of their 
PSD stress results are summarized in Table 2. The fatigue life results,  due to the accelerated 
loadings, for bezel (Element 11961) are: 4.82 hours from frequency domain method and 5.09 
hours from time domain method. The relative error in life is 5.3% w.r.t. time domain method. 
The fatigue life for the housing component (Element 16235) is 547 hours from frequency 
method; 601.4 hours from time domain method. The relative error is 9.05% w.r.t. time domain 
method. 
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Fig.3 Auto PSD of load Ch#36 for PHH, on UCA bracket 

 
Fig.4 Auto PSD of load Ch#37 for PHH, on LCA bracket 

 
Fig. 5  Cross PSD amplitude, between  load Ch# 36 and 37, PHH 

 
Fig. 6  Cross PSD phase, between  load Ch# 36 and 37, PHH 
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Element 53691 (LR UCA (-Y)), SAE950X
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Fig.7 Stress PSD Profile of Element 53691 (UCA Bracket) 

 

Element 52853 (RR LCA (+Y)), SAE950X
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Fig.8 Stress PSD Profile of Element 52853 (LCA Bracket) 

 
 

Table 1:  Statistical Properties of PSD Stress Results (Axle) 
Element No. Effective 

Frequency (Hz) 
Irregularity Factor 

(α) 
Max. PSD 

(MPa^2/Hz) 
RMS 
(MPa) 

53691 15.5 0.4117 1.965E4 54.86 
52853 9.6 0.3724 1.735E4 49.1 
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Fig. 9  Headlamp assembly FEM without front lens 

 

 
Fig. 10 PSD profile of base acceleration input (Z) 
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Fig. 11  Stress PSD profile of Element 11961 (Bezel) 
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Stress PSD of E16235(Housing), PP/TALC40

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04

Frequency (Hz)

S
tr

es
s 

P
S

D
 (

M
P

a^
2/

H
z)

 
Fig. 12  Stress PSD profile of Element 16235 (Housing) 

 
Table 2:  Statistical Properties of PSD Stress Results (Headlamp) 

Element No. Effective 
Frequency (Hz) 

Irregularity Factor 
(α) 

Max. PSD 
(MPa^2/Hz) 

RMS 
(MPa) 

11961 264.1 0.7115 3.967 7.28 
16235 754.6 0.4096 0.938 4.14 

 
Conclusion 
 
A practical procedure for automotive CAE durability analysis using the random vibration 
approach is presented in this paper. Two examples of automotive structures, a rear axle 
assembly made of metals, and a headlamp assembly made of plastics, are presented to illustrate 
the analysis approach and their applications. The example results show that the random 
vibration approach costs less CPU time and memory.  The two examples also reveals that the 
results from both frequency and time domains are comparable, in terms of stress levels and 
fatigue life prediction. In addition, the frequency domain method can improve our understanding 
of system dynamic behaviors, in terms of frequency characteristics of both structures and loads, 
and their couplings. More work is underway to make automatic PSD load matrix generation, 
and to smooth link all three steps in the evaluation. 
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in this work, especially S. Sreedhar and V. Monkaba of the Axle Driveline CAE group for the 
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