Using the MSC/Nastran Superelement Modal Method to Improve the Accuracy of Predictive Fatigue Loads of a Short and Long Arm Type Rear Suspension Dr. Hong Zhu, Dr. John Dakin and Ray Pountney, Ford Motor Company Limitd Basildon Essex SS16 6EE UK

Abstract

In the fiercely competitive world of today's automotive industry, Computer Aided Engineering (CAE) is playing a more and more important role in shortening the design cycle time, minimising costs and improving the product quality.

For vehicle engineering, an optimised design is to develop a light-weight, safe and durable system. A key aspect of the fatigue/durability process is to quantify the vehicle service loads in the early design phase. Within the constraints of the development time, cost and quality, the trend has been to reduce road measurement, to use more rig simulation, to increase CAE prototypes and to decrease hardware prototypes. The accuracy of the CAE durability process is mandated to achieve a robust design.

This investigation includes an application of the MSC/Nastran superelement modal method to improve the load accuracy of a short and long arm typed rear suspension. Also a comparison is made between the loads obtained using rigid body dynamics and those including MSC/Nastran flexible bodies and to quantify the influence of the elastic suspension components such as links and knuckles.

Rigid body dynamic simulation methods usually neglect the flexibility and the modal properties of the elastic components. An integration of the MSC/Nastran superelement modal method with the MDI/Adams rigid body dynamics method offers an effective tool to improve the quality of the prediction of dynamic fatigue loads in the new product development.

1. Introduction

Rigid body dynamic analysis is efficient, but it ignores any component elasticity and simplifies dynamics of the mechanical components. Finite element analysis includes the elastic deformation and more accurate dynamic/inertia effects of the mechanical components, but it is not efficient for complex systems undergoing large displacements.

A combination of the finite element analysis with the rigid body dynamic analysis provides an effective method to generate predictive fatigue loads.

2. Theoretical Background

Superelements - Brief Review

A mechanical system consists of several superelements.

A superelement is a component made up of many finite elements.

A superelement is composed of interior Degrees Of Freedom (DOFs) and boundary DOFs.

The forces at all interior DOFs are set equal to zero. The boundary DOFs are located at the connection points of a superelement.

When rigid body representations of components undergo relatively large elastic deformations, they should be replaced with flexible bodies by means of the Nastran superelement.

The Modal Method

The physical displacements are transformed to modal displacements:

 $u(t)=\Sigma[\phi_i] q_i(t)$ (i=1, Number of DOFs) (1) where:

u(t) = physical displacement

 $[\phi_i] =$ i-th mode shape

 $q_i(t) = i$ -th modal displacement

Usually, the number of modes are significantly smaller than the number of physical degrees of freedom.

It is not practical and also not necessary to select the full set of free-free normal modes.

It is observed that the excitation frequency of the applied load is under a cut-off frequency determined by measurement sample rate and filtering in terms of experimental data. Therefore, the significant dynamic response can be enveloped by a set of finite modes, the response of the modes higher than the cut-off frequency will be quasi-static.

The $[\phi_i]$ may be partitioned into two sets of modes, $[\phi_i] \Rightarrow [\phi_n \quad \phi_s]$ (2) where: $[\phi_n] =$ normal mode shape (number of selective modes) $[\phi_s] =$ static mode shape (number of interface DOFs) Solve the eigenvalue problem using finite elements, $\{[K] - \omega^2 [M] \} [\phi_n] = 0$ where:

 ω^2 = eigenvalue

$$[K] = \begin{bmatrix} K^{BB} & K^{BI} \\ K^{IB} & K^{II} \end{bmatrix} \text{ stiffness matrix}$$

$$[M] = \begin{bmatrix} M^{BB} & M^{BI} \\ M^{IB} & M^{II} \end{bmatrix} \text{ mass matrix}$$

I = internal DOFs B = boundary DOFs

Solve the static problem using finite elements,

 $[K] \{u_s\} = \{F_t\}$

where:

 $\{u_s\} =$ static displacement vector

 $\{F_t\}$ = truncation force vector equivalent to applied force minus modally represented force

(for convenience, unit force can be applied to each the boundary DOFs successively with all other boundary DOFs fixed)

Form

$$\begin{split} [K^*] &= \left\{ u_s \right\}^T [K] \; \left\{ u_s \right\} \\ [M^*] &= \left\{ u_s \right\}^T [M] \; \left\{ u_s \right\} \end{split}$$

Solve the pseudo eigenvalue problem using finite elements $\{[K^*] - \omega^{*^2}[M^*]\}[\phi^*_s] = 0$

(5)

(6)

(3)

(4)

The static mode shape is calculated,

 $[\phi_s] = \{u_s\} \ [\phi_s]$

Finally, the mode set $[\phi_i] \Rightarrow [\phi_n \quad \phi_s]$ are orthonomalised and imported to the following coupling dynamic equation in Adams:

$$M \xi'' + M' \xi' - \frac{1}{2} [\partial M / \partial \xi \xi']^T \xi' + K \xi + f_g + D \xi' + [\partial \psi / \partial \xi]^T \lambda = Q$$
(7)

where:

 $\xi, \xi', \xi'' =$ the flex body generalised co-ordinates and time derivatives

M, M' = the flex body mass matrix and its derivative

 $\partial M/\partial \xi$ = partial derivative of M wrt generalised co-ordinates

K = the generalised stiffness matrix

- f_g = the generalised gravitational force
- D = the damping matrix
- ψ = the constraint equations
- λ = the Lagrange multipliers for the constraints
- Q = vector of applied forces

Note that M matrix is a function of mode shapes. Detail of the various inertia invariants are available in the Adams/Flex Primer [1].

3. Nastran Superelement Models

3.1 Nastran Superelement Job Control

Nastran superelement normal mode solution is employed to extract modal information.

The difference of this analysis from the rountine superelement run is as follows:

- 1) User needs to include DMAP alter_N70 to write out the Nastran punch file with correct information to completely define a flexible body in Adams.
- 2) ECHO=PUNCH, SORT is required for Adams.
- 3) User must define connection points, that is hard points which represent location of constraints or loads in the mechanical system. The key statement is CSUPEXT.
- 4) User must define the number of modes. Key statements are SPOINT and SEQSET1.
- 5) User needs to make sure the co-ordinates of connection nodes of the Nastran superelement model are as same as those of connection marks of the Adams flexible body model.

The Nastran superelement example for a rear suspension front link is listed in Appendix A.

Two superelements, front link and knuckle, are created. Their information is as follows:

3.2 Superelement Front Link:

520 elements mainly CQUAD4.492 Nodes2 connection points20 normal modes12 static modes

3.3 Superelement Knuckle:

11543 elements mainly CQUAD4.7978 Nodes6 connection points40 normal modes36 static modes

It is obvious that the modal co-ordinates are much smaller than the physical co-ordinates.

The number of nodes does not directly affect the performance of the simulation. It is the number of modes and the number of connection points that impact simulation speed.

However, the number of nodes does affect the performance of the graphical pre- and post-processing.

3.4 Interface between Nastran and Adams

The Nastran punch file is translated to Adams modal neutral file by means of pch2mnf translator.

4. Adams Models

A short and long arm type rear suspension (SLA) is modelled using Adams and Adams/Flex.

The Adams rigid body model and the Adams flexible body of the suspension are shown in Fig.1 and 2. There are four flexible bodies in Fig.2, i.e., two front links and two knuckles on both the left and right hand side. The finite element models of the front link and the knuckle are shown in Fig.3.

The Adams flexible bodies are created by importing the modal neutral files.

For this application, modal neutral files, flink.mnf and knuckle.mnf, are imported to Adams.

It should be noted that the flexible bodies cannot be directly joined to each other, and also cannot be connected to bushes straight away (a current Adams limitation). The massless dummy parts and fixed joints are used at these positions.

The applied loads are 6 dimensional load time histories at each wheel centre.

The load time histories are measured loads at the vehicle proving ground via wheel force transducers. The event description for the complete durability route of 150k miles are tabulated in Table 1.

The constraints are applied to the vehicle body side of the bushes between the body to sub-frame.

5. Result and Analysis

The modal frequency sets of the front link and the knuckle are presented in tables 2 and 3.

In tables 2 and 3, the frequencies of normal modes are listed in Column 2, and the frequencies of normal modes and static modes are included in Column 3. The frequencies are orthonomalised. It is seen that the frequency set of normal modes after orthonomalisation is very accurate in comparison with those from finite element calculation.

The modes higher than the maximum normal modes are static modes, but some static modes can be mixed with the normal modes. In other words, although the number of the modes including the normal modes and static modes is certain in an analysis, the sequence of the modes depends on the number of the retained normal modes and modal orthonomalisation.

It is not guaranteed that the static modes will always follow the normal modes.

Fig.4 shows the hard point description of the SLA rear suspension.

The tables 4 and 5 shows the comparison of rear suspension left and right peaks global loads from different sources. In tables 4 and 5, the major loads are highlighted by an asterisk. Note that in tables 4 and 5, f62 and f9 are calculated for the measured load set, whereas, f9 are measured for the calculated loads. The calculated loads are generally correlated with the measured loads with exception of the moments at pt9. The moments at pt9 need to be investigated further.

The trend is that the loads using Adams flexible body model are closer to the measured loads than those using Adams rigid body model.

Since the loads on right hand side of the vehicle shows similar trend as those on left hand side, the subsequent analysis is concentrated on the left hand side. Five major component loads are chosen to make further analysis

The five component loads on the left hand side are:

f2xL=tie blade longitudinal load,

f7yL=upper link lateral load,

fdzL= damper vertical load,

f61yL=front low link lateral load,

f62yL=rear low arm lateral load.

The table 6 shows the comparison of the fatigue potential damage [2] from different sources for a complete suspension durability route.

The potential damage analysis is based on the uniaxial fatigue analysis using the local strain approach, as shown in Fig.5. Ideally fatigue life estimates obtained from finite element analysis being driven by experimental loads provides the best approach for durability assessment. However, due to time constraints it was decided to perform a potential damage analysis using the load time history data and the strain life curve only, as shown in Fig.6. Whilst this approach does not determine actual fatigue life it does allow an adequate assessment in terms of relative damageability from each of the different loading conditions.

Strain-Life Data are as follows:	
Fatigue Strength Coefficient	sf'=600 N/mm2
Fatigue Strength Exponent	b=-0.087
Fatigue Ductile Coefficient	ef'=0.59
Fatigue Ductile Exponent	c=-0.58
Cyclic Strength coefficient	K'=600 N/mm2
Cyclic Strain Hardening Exponent	n'=0.15

For a comparison of two load time histories, the procedure is to perform potential damage analyses for a complete test route time history by factoring the first loads time history to produce an overall potential damage of 1 i.e. just meets the fatigue requirements. The load factor from the analysis of the first time history is used to perform the potential damage for the second load time history. The damage comparison can be made using a single dimensional load time history or different possible combinations of the three dimensional load time histories.

In the table 6, the most damaging event is highlighted by an asterisk. The exceptional case is highlighted by two asterisks. The values are still close in the exceptional case. By observation of the damage level of the major component load at the most damaged events such as event3, event5, event8, event12, event14 and event17, it is seen that the damage of loads from flexible body dynamics is closer to that of the measured loads than that from the rigid body dynamics in the majority of cases. The damage for the rigid and flex loads at each event is compared with that of baseline measured loads.

The Fig.7 to 11 show the five major load time histories on the event Chuckholes between the two Adams models. It is obvious that the loads for the rigid body model are higher than those for the coupled flexible body model. Since the fully instrumental measured loads are from a different data collection to that used for the dynamic analysis, they are not included in the time history plots.

The Fig.12 to 16 show the comparison of the level crossing counts for a defined suspension service life from different sources. The level crossing counting method counts the number of times a load time history passes through a set of user defined load levels. These plots of level crossing counts show that the predicted loads from the coupled flexible body model is more accurate than those from the rigid body model in correlation with the measured loads, this trend is more obvious towards the peak loads.

The modal representation in this investigation is linear, but the non-linear behaviour of the system can be represented by piecewise linear representation, i.e., by multiple flexible bodies appropriately jointed together (for example, twistbeam). This method can be extended to include the whole body structure.

6. Conclusions and Further Work

Loads calculated from rigid body dynamics are over-predicted as a result of neglecting component elasticity and modal characteristics.

Loads calculated from coupled rigid body and flexible body dynamics have a better correlation with the measured loads.

Nastran superelement modal method is practical and effective.

A further mode reduction is required to improve the simulation efficiency.

Table 1 - Proving Ground Events and Repetitions

Description	Event
Steering lock to Lock Figure of Eight	01 02
Cobblestone Slalom Chatter Bumps	03 04
Resonance Road part 1	05
Small Chuckholes Railroad Crossing	06 07
Road 11 to Road 12 Intersection	08
Body Twist	10
Accel 5 Bumps Large Chuckholes	11 12
Pt B, Road 11 to Postel Int.	13
Postel Road with Braking Road 10	14 15
Kerb Island	16
Resonance Road Part 2 Jounce/Rebound Holes	17 18
Body Twist Slalom	19

Table 2 - Frequency List of the Front Link

Mode No	Frequency (Hz)	Frequency (Hz)	Mode No	Frequency (Hz)	Frequency (Hz)
	No static	With static		No static	With static
1	0.028	0.000	17	5334.984	5364.151
2	0.031	0.000	18	6018.949	6023.984
3	0.031	0.012	19	6263.947	6296.056
4	0.034	0.022	20	6579.842	6620.197
5	0.038	0.026	21		6979.506
6	0.044	0.033	22		7255.833
7	553.056	553.086	23		7661.274
8	612.029	612.066	24		7791.368
9	1298.470	1299.424	25		8144.525
10	1674.102	1674.499	26		8479.880
11	2435.984	2438.890	27		9492.721
12	2969.268	2974.571	28		9506.543
13	3675.608	3677.447	29		10026.844
14	3834.148	3834.660	30		10051.648
15	3847.922	3873.613	31		10363.393
16	5117.348	5118.166	32		11816.178

Mode No	Frequency	Frequency	Mode No	Frequency	Frequency
	(Hz)	(Hz)		(Hz)	(Hz)
	No static	With static		No static	With static
1	0.043	0.038	39	2331.732	2345.218
2	0.053	0.050	40	2365.445	2389.919
3	0.060	0.057	41		2439.346
4	0.061	0.057	42		2521.459
5	0.063	0.061	43		2627.365
6	0.064	0.062	44		2648.903
7	26.667	26.667	45		2755.647
8	108.745	108.746	46		2836.148
9	175.988	175.994	47		2903.100
10	315.848	315.857	48		3006.180
11	356.495	356.561	49		3033.273
12	435.888	436.133	50		3070.553
13	579.030	579.150	51		3093.723
14	652.709	652.921	52		3143.503
15	730.758	733.626	53		3216.347
16	892.340	893.332	54		3334.793
17	964.093	965.345	55		3392.889
18	991.984	993.091	56		3503.977
19	1045.222	1048.207	57		3543.026
20	1049.595	1053.317	58		3942.539
21	1189.511	1194.276	59		4128.202
22	1316.642	1321.488	60		4256.539
23	1374.577	1377.332	61		4502.855
24	1426.021	1427.682	62		4691.050
25	1517.957	1525.410	63		5060.996
26	1648.670	1657.166	64		5120.369
27	1668.502	1670.291	65		5369.120
28	1683.609	1709.386	66		5807.898
29	1726.907	1743.234	67		6209.088
30	1857.208	1866.092	68		6279.089
31	1885.772	1899.696	69		6636.637
32	1931.682	1957.551	70		6900.622
33	2013.771	2034.655	71		7862.280
34	2101.217	2136.289	72		8255.050
35	2163.584	2184.337	73		9633.708
36	2173.802	2197.519	74		11184.644
37	2214.978	2243.235	75		13965.901
38	2284.947	2325.227	76		45180.678

Table 3 - Frequency List of the Knuckle

Table 4 - Comparison	of Rear Suspension l	Left Knuckle Peak Loads

	£0 -	60 - 7	60- 7	6 P	67	6 R
	IZXL_g_max	rzyL_g_max	rzzL_g_max	I/XL_g_max	r/yL_g_max	I/ZL_g_max
	(N)	(N)	(N)	(N)	(N)	(N)
measured	5140*	551	970	317	1910*	2665
rigid	14667*	455	2110	478	8159*	2968
flex	6568*	257	1276	647	2224*	3009
	f9xL_g_max	f9yL_g_max	f9zL_g_max	m9xL_g_max	m9yL_g_max	m9zL_g_max
	(N)	(N)	(N)	(Nmm)	(Nmm)	(Nmm)
measured	13375	5575	8732	1140154	34136	1213221
rigid	9244	5293	13156	1441206	345380	439780
flex	9243	5293	13156	1441206	345380	439780
	fdxL g max	fdyL g max	fdzL g max	f61xL g max	f61yL g max	f61zL g max
	(N)	(N)	(N)	(N)	(N)	(N)
measured	1516	3282	7417*	507	9681*	1995
rigid	947	4962	8068*	895	16793*	2801
flex	906	4263	7226*	630	13268*	2798
	f62xL g max	f62yL g max	f62zL g max			
	(N)	(N)	(N)			
measured	334	4831*	1029			
rigid	940	6125*	1000			
flex	878	6289*	1165			

Maximum Loads on the Left Knuckle

Minimum Loads on the Left Knuckle

	f2xL_g_min	f2yL_g_min	f2zL_g_min	f7xL_g_min	f7yL_g_min	f7zL_g_min
	(N)	(N)	(N)	(N)	(N)	(N)
measured	-12481*	-475	-832	-688	-8782*	-887
rigid	-14926*	-411	-2934	-817	-10187*	-1123
flex	-15629*	-325	-2571	-835	-8180*	-1110
	f9xL_g_min	f9yL_g_min	f9zL_g_min	m9xL_g_min	m9yL_g_min	m9zL_g_min
	(N)	(N)	(N)	(Nmm)	(Nmm)	(Nmm)
measured	-5969	-5321	-6035	-416220	-926631	-685434
rigid	-2399	-3983	-562	-975403	-221826	-460507
flex	-2399	-3983	-562	-975403	-221826	-460507
	fdxL_g_min	fdyL_g_min	fdzL_g_min	f61xL_g_min	f61yL_g_min	f61zL_g_min
	(N)	(N)	(N)	(N)	(N)	(N)
measured	-2111	-2163	-3281*	-1688	-2933*	-1733
rigid	-3687	-1424	-2513*	-3546	-6779*	-2875
flex	-3066	-1368	-2432*	-3311	-3912*	-2873
	f62xL_g_min	f62yL g min	f62zL g min			
	(N)	(N)	(N)			
measured	-380	-6648*	-6771			
rigid	-872	-10495*	-2937			
flex	-451	-5167*	* -2911			

Global Axes Description			Point	Des	script:	ion on	Knuckle	(L:	=left	: R	=ri	ght)		
x-axis y-axis z-axis	:	positive positive positive	vehicle vehicle vehicle	backwards left to right upwards	pt2 pt7 pt9	2 - 7 - 9 -	tie b upper wheel	lade link centre	ptd pt61 e pt62	- (- : - :	damper front rear	low lowe	er ra	link rm

End of the Table 4

Maximum Loads on the Right Knuckle

	f2xR_g_max	f2yR_g_max	f2zR_g_max	f7xR_g_max	f7yR_g_max	f7zR_g_max
	(N)	(N)	(N)	(N)	(N)	(N)
measured	4617*	92	679	259	8068*	2388
rigid	7728*	476	3958	389	10228*	2265
flex	6913*	351	1059	476	6558	2269
	f9xR_g_max	f9yR_g_max	f9zR_g_max	m9xR_g_max	m9yR_g_max	m9zR_g_max
	(N)	(N)	(N)	(Nmm)	(Nmm)	(Nmm)
measured	11113	4186	9559	317657	107709	700031
rigid	8258	4117	12053	1049131	215801	463169
flex	8258	4117	12053	1049131	215801	463169
	fdxR_g_max	fdyR_g_max	fdzR_g_max	f61xR_g_max	f61yR_g_max	f61zR_g_max
	(N)	(N)	(N)	(N)	(N)	(N)
measured	1450	2066	3507*	536	2620*	1797
rigid	990	1465	7426*	853	4562*	3102
flex	859	1260	6632*	515	3410*	2754
	f62xR_g_max	f62yR_g_max	f62zR_g_max			
	(N)	(N)	(N)			
measured	335	6473*	474			
rigid	847	7168*	688			
flex	344	4658*	736			

Minimum Loads on the Right Knuckle

	f2xR_g_min	f2yR_g_min	f2zR_g_min	f7xR_g_min	f7yR_g_min	f7zR_g_min
	(N)	(N)	(N)	(N)	(N)	(N)
measured	-10311*	-1230	-1208	-608	-1353*	-867
rigid	-14344*	-259	-4482	-584	-7623*	-1249
flex	-14254*	-142	-2164	-595	-2227*	-1268
	f9xR_g_min	f9yR_g_min	f9zR_g_min	m9xR_g_min	m9yR_g_min	m9zR_g_min
	(N)	(N)	(N)	(Nmm)	(Nmm)	(Nmm)
measured	-4419	-6143	-2714	-1309271	-828498	-1666876
rigid	-3279	-4530	-568	-1265392	-404858	-459790
flex	-3279	-4530	-568	-1265392	-404858	-459790
	fdxR_g_min	fdyR_g_min	fdzR_g_min	f61xR_g_min	f61yR_g_min	f61zR_g_min
	(N)	(N)	(N)	(N)	(N)	(N)
measured	-1300	-1851	-3055*	-1774	-9727*	-1770
rigid	-3362	-4498	-2276*	-4051	-14648*	-2226
flex	-3020	-3986	-2010*	-3434	-12952*	-2180
	f62xR_g_min	f62yR_g_min	f62zR_g_min			
	(N)	(N)	(N)			
measured	-429	-4479*	-7241			
rigid	-488	-6458*	-2891			
flex	-415	-5337*	-2885			

Global	A	es Descri	iption		Point	Desc	ripti	on on	Knuckle	(L=	left	: R	l=ri	ght)
x-axis y-axis z-axis	:	positive positive positive	vehicle vehicle vehicle	backwards left to right upwards	pt: pt: pt:	2 - t 7 - u 9 - w	ie bl pper heel	ade link centre	ptd pt61 e pt62	- ċ - f - r	lamper Front Fear	low Lowe	ver er a	link rm

End of the Table 5

Table 6 - Comparison of the Potential Damage from Different Sources

Event	No.	Meas	sured	Rig	gid	F	lex
		damage	percentage	damage	percentage	damage	percentage
event	1	0.000	0.000	0.000	0.000	0.000	0.000
event	2	0.000	0.000	0.000	0.000	0.000	0.000
event	3**	0.692	65.832	7.248	44.139	8.271	50.117
event	4	0.000	0.041	0.975	5.940	0.856	5.187
event	5*	0.020	1.860	1.995	12.147	1.798	10.893
event	6	0.123	11.669	0.205	1.250	0.252	1.526
event	7	0.002	0.169	0.111	0.674	0.115	0.695
event	8*	0.000	0.002	0.035	0.211	0.043	0.259
event	9	0.000	0.000	0.000	0.000	0.000	0.000
event	10	0.000	0.029	0.009	0.056	0.010	0.063
event	11	0.000	0.031	0.069	0.421	0.091	0.550
event	12*	0.084	7.945	0.613	3.731	0.637	3.859
event	13	0.000	0.000	0.007	0.044	0.009	0.052
event	14*	0.002	0.218	0.165	1.002	0.159	0.965
event	15	0.000	0.000	0.000	0.001	0.000	0.001
event	16	0.000	0.017	0.013	0.079	0.015	0.089
event	17*	0.120	11.394	4.927	30.004	4.194	25.415
event	18	0.008	0.791	0.014	0.086	0.020	0.124
event	19	0.000	0.000	0.035	0.215	0.034	0.204
total	dam	1.051	100.000	16.421	100.000	16.504	100.000

f2xL - tie blade longitudinal loads

f7yL - upper link lateral loads -----

Event	No.	Meas	sured	Rigid		Fl	Flex	
		damage	percentage	damage	percentage	damage	percentage	
event	1	0.000	0.000	0.000	0.015	0.001	0.061	
event	2	0.000	0.033	0.002	0.065	0.002	0.077	
event	3*	0.206	18.950	0.456	17.225	0.274	12.105	
event	4	0.045	4.139	0.169	6.385	0.160	7.087	
event	5*	0.076	7.024	0.356	13.454	0.254	11.224	
event	6	0.056	5.131	0.049	1.832	0.068	3.026	
event	7	0.022	2.061	0.045	1.714	0.048	2.111	
event	8*	0.123	11.303	0.229	8.648	0.197	8.707	
event	9	0.004	0.343	0.000	0.005	0.000	0.007	
event	10	0.001	0.076	0.003	0.096	0.003	0.113	
event	11	0.003	0.297	0.014	0.510	0.015	0.647	
event	12*	0.184	16.900	0.128	4.833	0.162	7.183	
event	13	0.021	1.918	0.041	1.548	0.038	1.676	
event	14*	0.008	0.743	0.018	0.697	0.019	0.822	
event	15	0.000	0.000	0.002	0.068	0.000	0.009	
event	16	0.005	0.451	0.008	0.295	0.005	0.217	
event	17*	0.274	25.184	0.956	36.072	0.884	39.109	
event	18	0.007	0.644	0.014	0.510	0.013	0.592	
event	19	0.052	4.804	0.160	6.029	0.118	5.227	
total	dam	1.087	100.000	2.649	100.000	2.260	100.000	

fdzL - damper vertical loads

Event	No.	Meas	sured	Rigid		F	Flex	
		damage	percentage	damage	percentage	damage	percentage	
event	1	0.000	0.000	0.000	0.000	0.000	0.000	
event	2	0.000	0.000	0.000	0.000	0.000	0.000	
event	3*	0.136	12.492	0.327	7.137	0.210	6.445	
event	4	0.070	6.431	0.519	11.328	0.346	10.636	
event	5*	0.252	23.073	0.868	18.968	0.608	18.709	
event	6	0.019	1.709	0.090	1.963	0.077	2.372	
event	7	0.010	0.899	0.083	1.823	0.063	1.935	
event	8*	0.014	1.320	0.070	1.522	0.054	1.655	
event	9	0.000	0.006	0.000	0.001	0.000	0.000	
event	10	0.000	0.033	0.001	0.017	0.001	0.024	
event	11	0.012	1.121	0.030	0.650	0.025	0.757	
event	12*	0.064	5.899	0.343	7.490	0.276	8.477	
event	13	0.003	0.289	0.015	0.332	0.012	0.383	
event	14*	0.012	1.060	0.056	1.228	0.038	1.155	
event	15	0.000	0.002	0.000	0.001	0.000	0.000	
event	16	0.008	0.756	0.009	0.186	0.006	0.192	
event	17*	0.481	44.156	2.122	46.348	1.497	46.048	
event	18	0.007	0.669	0.007	0.148	0.005	0.164	
event	19	0.001	0.086	0.039	0.860	0.034	1.046	
total	dam	1.090	100.000	4.578	100.000	3.251	100.000	

f61yL - front low link lateral loads

Event No.		Mea	Measured		Rigid		Flex	
		damage	percentage	damage	percentage	damage	percentage	
event	1	0.000	0.000	0.000	0.001	0.000	0.005	
event	2	0.001	0.054	0.003	0.052	0.003	0.069	
event	3*	0.401	39.165	1.454	24.087	1.029	24.077	
event	4	0.023	2.213	0.444	7.353	0.258	6.041	
event	5*	0.127	12.374	0.920	15.240	0.625	14.629	
event	6	0.031	3.026	0.086	1.432	0.078	1.834	
event	7	0.011	1.114	0.062	1.021	0.053	1.239	
event	8*	0.049	4.766	0.208	3.446	0.191	4.458	
event	9	0.001	0.096	0.000	0.001	0.000	0.001	
event	10	0.003	0.248	0.005	0.082	0.004	0.094	
event	11	0.010	0.939	0.042	0.693	0.038	0.897	
event	12*	0.042	4.141	0.271	4.497	0.225	5.254	
event	13	0.009	0.866	0.038	0.632	0.037	0.873	
event	14*	0.007	0.679	0.057	0.949	0.038	0.894	
event	15	0.000	0.000	0.000	0.003	0.000	0.002	
event	16	0.002	0.205	0.008	0.130	0.005	0.119	
event	17*	0.290	28.340	2.299	38.096	1.573	36.791	
event	18	0.004	0.422	0.010	0.173	0.010	0.225	
event	19	0.014	1.350	0.127	2.109	0.107	2.499	
total	dam	1.024	100.000	6.036	100.000	4.275	100.000	

f62yL - rear	low	link	lateral	loads
--------------	-----	------	---------	-------

Event	No.	Measured		Rig	Rigid		Flex	
		damage	percentage	damage	percentage	damage	percentage	
event	1	0.000	0.000	0.000	0.000	0.000	0.000	
event	2	0.003	0.292	0.000	0.015	0.000	0.021	
event	3*	0.733	67.664	1.598	64.031	1.120	71.239	
event	4	0.005	0.418	0.113	4.533	0.013	0.805	
event	5*	0.007	0.628	0.104	4.160	0.013	0.803	
event	6	0.095	8.739	0.104	4.158	0.118	7.526	
event	7	0.003	0.242	0.008	0.306	0.004	0.224	
event	8*	0.083	7.666	0.057	2.271	0.042	2.676	
event	9	0.001	0.047	0.000	0.000	0.000	0.000	
event	10	0.003	0.262	0.004	0.168	0.004	0.275	
event	11	0.000	0.005	0.001	0.031	0.001	0.039	
event	12*	0.091	8.432	0.139	5.587	0.138	8.810	
event	13	0.013	1.157	0.009	0.342	0.007	0.473	
event	14*	0.003	0.308	0.013	0.511	0.008	0.532	
event	15	0.000	0.000	0.000	0.002	0.000	0.000	
event	16	0.001	0.124	0.002	0.064	0.002	0.096	
event	17*	0.028	2.580	0.296	11.877	0.062	3.965	
event	18	0.008	0.775	0.004	0.156	0.004	0.241	
event	19	0.007	0.661	0.045	1.789	0.036	2.275	
total	dam	1.083	100.000	2.496	100.000	1.572	100.000	

End of the Table 6

Fig.1 - Rigid Body Dynamic Model of Rear Suspension

Fig.2 - Coupled Rigid Body and Flexible Body Dynamic Model of Rear Suspension

Fig.3 - Finite Element Model of the Front Link and the Knuckle

Location	Point No.
Upper link / crossmember	1
Tie bar / Body	2
Front lower link / Crossmember	3
Rear lower link / Crossmember	4
Spring / Crossmember	5
Upper link / Knuckle	7
Spring / Rear lower link	8
Wheel Centre	9
Tyre / Ground Contact	10
Point on axle centre line	11
A-Roll Bar Link / Bar	16
A-Roll Bar Link / Lower arm	17
Anti-roll bar / Crossmember	18
Damper / knuckle	20
B stop, S Assist / Crossmember	35
B stop, S Assist / Rear lower link	38
Front lower link / Knuckle	61
Rear lower link / Knuckle	62
Damper / Crossmember	71

Fig.4 - Hard Point Description of the SLA Rear Suspension

Fig.5 - Strain Life Approach

Fig.6 - Potential Damage Process

Fig.7 - Event Chuckholes - Tie Blade Longitudinal Loads, Adams Dynamics

Fig.8 - Event Chuckholes - Front Low Link Lateral Loads, Adams Dynamics

Fig.10 - Event Chuckholes - Upper Link Lateral Loads, Adams Dynamics

Fig.11 - Event Chuckholes - Damper Vertical Loads, Adams Dynamics Tue Mar 16 13:27:40 1999

Fig.12 - Comparison of Level Crossing Counts of Tie Blade Longitudinal Loads

Fig.13 - Comparison of Level Crossing Counts of Front Low Link Lateral Loads Tue Mar 16 15:12:50 1999

Fig.14 - Comparison of Level Crossing Counts of rear Low Arm Lateral Loads

Fig.15 - Comparison of Level Crossing Counts of Upper Link Lateral Loads

Fig.16 - Comparison of Level Crossing Counts of Damper Vertical Loads

Reference

- Adams/Flex V9.1 User's Guide, Mechanical Dynamics, Inc
 MDE V2.3 User's Reference Manuals, MTS System Corporation